login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Periodic part of continued fraction for square roots of integers.
4

%I #14 Oct 09 2023 01:43:53

%S 2,1,2,4,2,4,1,1,1,4,1,4,6,3,6,2,6,1,1,1,1,6,1,2,1,6,1,6,8,4,8,2,1,3,

%T 1,2,8,2,8,1,1,2,1,1,8,1,2,4,2,1,8,1,3,1,8,1,8,10,5,10,3,2,3,10,2,1,1,

%U 2,10,2,10,1,1,3,5,3,1,1,10,1,1,1,10,1,2,1,10,1,4,1,10,1,10,12,6,12,4,12

%N Periodic part of continued fraction for square roots of integers.

%H T. D. Noe, <a href="/A121339/b121339.txt">Rows n = 2..1000 of triangle, flattened</a>

%e The table starts:

%e 2

%e 1 2

%e <empty>

%e 4

%e 2 4

%e 1 1 1 4

%e 1 4

%t a[n_] := If[ IntegerQ[ Sqrt[n] ], {}, ContinuedFraction[ Sqrt[n] ] // Last]; Table[a[n], {n, 2, 39}] // Flatten (* _Jean-François Alcover_, Sep 10 2012 *)

%Y Cf. A003285 (row lengths), A013943 (row lengths for nonempty rows).

%K nice,nonn,tabf

%O 2,1

%A _Franklin T. Adams-Watters_, Aug 28 2006