login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of compositions of n into k primes (i.e., ordered sequences of k primes having sum n; n>=2, k>=1).
17

%I #19 Feb 13 2021 07:57:20

%S 1,1,0,1,1,2,0,1,1,1,2,3,0,2,3,1,0,2,4,4,0,3,6,6,1,1,0,6,8,5,0,2,9,13,

%T 10,1,1,2,6,16,15,6,0,3,6,22,25,15,1,0,2,10,24,36,26,7,0,4,9,22,50,45,

%U 21,1,1,0,12,32,65,72,42,8,0,4,12,34,70,106,77,28,1,1,2,12,40,90,150

%N Triangle read by rows: T(n,k) is the number of compositions of n into k primes (i.e., ordered sequences of k primes having sum n; n>=2, k>=1).

%C Row n has floor(n/2) terms.

%C Sum of terms in row n = A023360(n).

%C T(n,1) = A010051(n) (characteristic function of primes); T(n,2) = A073610(n); T(n,3) = A098238(n).

%C Sum_{k=1..floor(n/2)} k*T(n,k) = A121304(n).

%H Alois P. Heinz, <a href="/A121303/b121303.txt">Rows n = 2..200, flattened</a>

%F G.f.: 1/(1 - t*Sum_{i>=1} z^prime(i)).

%e T(9,3) = 4 because we have [2,2,5], [2,5,2], [5,2,2] and [3,3,3].

%e Triangle starts:

%e 1;

%e 1;

%e 0, 1;

%e 1, 2;

%e 0, 1, 1;

%e 1, 2, 3;

%e 0, 2, 3, 1;

%e 0, 2, 4, 4;

%e ...

%p G:=1/(1-t*sum(z^ithprime(i),i=1..30))-1: Gser:=simplify(series(G,z=0,25)): for n from 2 to 21 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 2 to 21 do seq(coeff(P[n],t,j),j=1..floor(n/2)) od; # yields sequence in triangular form

%p # second Maple program:

%p with(numtheory):

%p b:= proc(n) option remember; local j; if n=0 then [1]

%p else []; for j to pi(n) do zip((x, y)->x+y, %,

%p [0, b(n-ithprime(j))[]], 0) od; % fi

%p end:

%p T:= n-> subsop(1=NULL, b(n))[]:

%p seq(T(n), n=2..20); # _Alois P. Heinz_, May 23 2013

%t nn=20;a[x_]:=Sum[x^Prime[n],{n,1,nn}];CoefficientList[Series[1/(1-y a[x]),{x,0,nn}],{x,y}]//Grid (* _Geoffrey Critzer_, Nov 08 2013 *)

%Y Cf. A010051, A023360, A073610, A098238, A121304, A224344.

%Y T(n^2,n) gives A341459.

%K nonn,tabf

%O 2,6

%A _Emeric Deutsch_, Aug 06 2006