%I #10 Jan 08 2020 00:31:24
%S 1,15,877,115975,27644437,10480142147,5832742205057,4506715738447323,
%T 4638590332229999353,6160539404599934652455,
%U 10293358946226376485095653,21195039388640360462388656799,52868366208550447901945575624941,157450588391204931289324344702531067
%N a(n) = Bell(3*n+1).
%H Andrew Howroyd, <a href="/A121292/b121292.txt">Table of n, a(n) for n = 0..50</a>
%F E.g.f.: exp(-1)*Sum_{n>=0} n*exp(n^3*x)/n!.
%t Table[ BellB[3*n + 1], {n, 0, 10}] (* _Jean-François Alcover_, Dec 13 2012 *)
%o (PARI) a(n)={my(k=3*n+1); k!*polcoef(exp(exp(x + O(x*x^k)) - 1), k)} \\ _Andrew Howroyd_, Jan 08 2020
%Y Cf. A000110, A070906.
%K easy,nonn
%O 0,2
%A _Vladeta Jovovic_, Aug 24 2006
%E Terms a(11) and beyond from _Andrew Howroyd_, Jan 08 2020