Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 May 25 2018 03:23:52
%S 1,3,13,41,141,440,1391,4244,12913,38651,115082,339646,997709,2915010,
%T 8485573,24612666,71191458,205393819,591330506,1699226719,4874925420,
%U 13965498369,39957144189,114193222891,326023307022,929958622555,2650483647976,7548608038736
%N Number of separated bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).
%C Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of equal length without any shared node and all nodes having degree at most 4. - _Andrew Howroyd_, May 25 2018
%H Andrew Howroyd, <a href="/A121162/b121162.txt">Table of n, a(n) for n = 6..200</a>
%H Camden A. Parks and James B. Hendrickson, <a href="https://doi.org/10.1021/ci00002a021">Enumeration of monocyclic and bicyclic carbon skeletons</a>, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
%o (PARI) \\ here G is A000598 as series
%o G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
%o C1(n)={sum(k=1, n\4, d1^(4*k) + 2*d1^(2*k)*d2^k + d2^(2*k))*(1 + d1^2)/(8*(1-d1))}
%o C2(n)={sum(k=1, n\4, 2*(d2^(2*k) + d4^k)*(1 + d2))*(1+d1)/(8*(1-d2))}
%o seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ _Andrew Howroyd_, May 25 2018
%Y Cf. A121158, A125669.
%K nonn
%O 6,2
%A _Parthasarathy Nambi_, Aug 13 2006
%E More terms from _N. J. A. Sloane_, Aug 27 2006
%E Terms a(26) and beyond from _Andrew Howroyd_, May 25 2018