|
|
A121011
|
|
Denominators of partial alternating sums of Catalan numbers scaled by powers of 1/(5*8^2) = 1/320.
|
|
1
|
|
|
1, 320, 51200, 6553600, 5242880000, 1677721600000, 268435456000000, 343597383680000000, 2199023255552000000, 17592186044416000000000, 2814749767106560000000000, 1801439850948198400000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Numerators are given under A121010.
This is the third member (p=3) of the third p-family of partial sums of normalized scaled Catalan series CsnIII(p):=sum(((-1)^k)*C(k)/((5^k)*F(2*p)^(2*k)),k=0..infinity) with limit F(2*p)*(-L(2*p+1) + L(2*p)*phi) = F(2*p)*sqrt(5)/phi^(2*p), with C(n)=A000108(n) (Catalan), F(n)= A000045(n) (Fibonacci), L(n) = A000032(n) (Lucas) and phi:=(1+sqrt(5))/2 (golden section).
The partial sums of the above mentioned third p-family are rIII(p;n):=sum(((-1)^k)*C(k)/((5^k)*F(2*p)^(2*k)),k=0..n), n>=0, for p=1,...
For more details on this p-family and the other three ones see the W. Lang links under A120996 and A121010.
|
|
LINKS
|
Table of n, a(n) for n=0..11.
|
|
FORMULA
|
a(n)=denominator(r(n)) with r(n) := rIII(p=3,n) = sum(((-1)^k)*C(k)/((5^k)*F(2*3)^(2*k)),k=0..n), with F(6)=8 and C(k):=A000108(k) (Catalan). The rationals r(n) are given in lowest terms.
|
|
EXAMPLE
|
Rationals r(n): [1, 319/320, 51041/51200, 6533247/6553600,
5226597607/5242880000, 1672511234219/1677721600000,...].
|
|
CROSSREFS
|
The second member is A121008/A121009.
Sequence in context: A168636 A264140 A045813 * A264063 A174778 A300849
Adjacent sequences: A121008 A121009 A121010 * A121012 A121013 A121014
|
|
KEYWORD
|
nonn,frac,easy
|
|
AUTHOR
|
Wolfdieter Lang, Aug 16 2006
|
|
STATUS
|
approved
|
|
|
|