login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A(x)^A(x) = 1 + x.
8

%I #21 Nov 27 2021 05:20:36

%S 1,1,-2,9,-68,740,-10554,185906,-3891320,94259952,-2592071760,

%T 79748398752,-2713685928744,101184283477680,-4102325527316184,

%U 179674073609647080,-8454031849605513024,425281651659459346944,-22777115050468598701248

%N E.g.f. satisfies: A(x)^A(x) = 1 + x.

%H G. C. Greubel, <a href="/A120980/b120980.txt">Table of n, a(n) for n = 0..375</a>

%F E.g.f.: A(x) = log(1+x)/LambertW(log(1+x)).

%F log(A(x)) = LambertW(log(1+x)).

%F E.g.f.: A(x) = 1/G(-x) where G(x) = g.f. of A052813.

%F E.g.f. of A052807 = -log(A(-x)) = -log(1-x)/A(-x).

%F a(n) = Sum_{k=0..n} (-1)^(k+1)*Stirling1(n,k)*(k-1)^(k-1). - _Vladeta Jovovic_, Jul 22 2006

%F |a(n)| ~ exp((exp(-1)-1)*n+3/2) * n^(n-1) / (exp(exp(-1))-1)^(n-1/2). - _Vaclav Kotesovec_, Jul 09 2013

%t CoefficientList[Series[Log[1+x]/LambertW[Log[1+x]], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jul 09 2013 *)

%t Table[StirlingS1[n, 0] + StirlingS1[n, 1] + Sum[(-1)^(k + 1)*StirlingS1[n, k]*(k - 1)^(k - 1), {k, 2, n}], {n,0,50}] (* _G. C. Greubel_, Jun 21 2017 *)

%t CoefficientList[Series[Exp[LambertW[Log[1+x]]], {x, 0, 25}], x]* Range[0, 25]! (* _G. C. Greubel_, Jun 22 2017 *)

%o (PARI) {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0); A[ #A]=-Vec(Ser(A)^Ser(A))[ #A]);n!*A[n+1]}

%o (PARI) x='x+O('x^50); Vec(serlaplace(exp(lambertw(log(1+x))))) \\ _G. C. Greubel_, Jun 22 2017

%Y Cf. A008275, A052813, A052807, A349561, A349583, A349585.

%K sign

%O 0,3

%A _Paul D. Hanna_, Jul 20 2006