login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A120852
Triangle read by rows, where t(n,1) = 1, t(n,m) = t(n,m-1) + (largest noncomposite {1 or prime} in row {n-1}).
2
1, 1, 2, 1, 3, 5, 1, 6, 11, 16, 1, 12, 23, 34, 45, 1, 24, 47, 70, 93, 116, 1, 48, 95, 142, 189, 236, 283, 1, 284, 567, 850, 1133, 1416, 1699, 1982, 1, 1700, 3399, 5098, 6797, 8496, 10195, 11894, 13593, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71
OFFSET
1,3
EXAMPLE
11 is the largest prime in row 4 of the triangle. So t(5,m) = 1 + 11*(m-1), for 1 <= m <= 5.
Triangle begins:
1,
1, 2,
1, 3, 5,
1, 6, 11, 16,
1, 12, 23, 34, 45,
1, 24, 47, 70, 93, 116,
...
PROG
(PARI) {z=11; w=[]; for(n=1, z, k=0; for(j=1, #w, if(k<w[j]&&(w[j]==1||isprime(w[j])), k=w[j])); print1(a=1, ", "); w=[a]; for(m=2, n, a=k+a; print1(a, ", "); w=concat(w, a)))} \\ Klaus Brockhaus, Aug 17 2006
CROSSREFS
Cf. A120853.
Row sums are in A160963. [Klaus Brockhaus, May 31 2009]
Sequence in context: A109533 A062705 A059234 * A285490 A058168 A367196
KEYWORD
nonn,tabl
AUTHOR
Leroy Quet, Jul 08 2006
EXTENSIONS
More terms from Klaus Brockhaus, Aug 17 2006
STATUS
approved