Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Nov 14 2015 18:20:01
%S 1,44,700,7460,63648,470934,3155691,19660630,115855025,653392740,
%T 3556757490,18805317960,97034823600,490465092600,2435567286708,
%U 11910569958216,57470522059594,274051266477560,1293219035408080
%N Number of permutations of length n with exactly 4 occurrences of the pattern 2-13.
%D R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
%D Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
%H Alois P. Heinz, <a href="/A120812/b120812.txt">Table of n, a(n) for n = 5..500</a>
%H R. Parviainen, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Parviainen/parviainen3.html">Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
%F a(n) = (-36 - 100 m - 13 m^2 + 4 m^3 + m^4)/(24(m + 6))Binomial[2m, m - 5]; generating function = x^5 C^11 (5 - 118C + 259C^2 - 240C^3 + 142C^4 - 62C^5 + 17C^6 - 2 C^7)/(2-C)^7, where C=(1-Sqrt[1-4x])/(2x) is the Catalan function.
%Y Cf. A002629, A094218, A094219, A120813-A120816.
%Y Column k=4 of A263776.
%K nonn
%O 5,2
%A Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 05 2006