login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k with the property that the concatenation of the nontrivial divisors of k (i.e., excluding 1 and k) is a prime.
9

%I #30 Oct 01 2024 13:17:09

%S 4,6,9,21,22,25,33,39,46,49,51,54,58,78,82,93,99,111,115,121,133,141,

%T 142,147,153,154,159,162,166,169,174,177,186,187,189,201,205,219,226,

%U 235,237,247,249,253,262,267,274,286,289,291,294,301,318

%N Numbers k with the property that the concatenation of the nontrivial divisors of k (i.e., excluding 1 and k) is a prime.

%H T. D. Noe, <a href="/A120712/b120712.txt">Table of n, a(n) for n = 1..1000</a>

%e k | divisors | concatenation

%e ---+----------------+--------------

%e 4 | (1) 2 (4) | 2

%e 6 | (1) 2, 3 (6) | 23

%e 9 | (1) 3 (9) | 3

%e 21 | (1) 3, 7 (21) | 37

%e 22 | (1) 2, 11 (22) | 211

%e 25 | (1) 5 (25) | 5

%e 33 | (1) 3, 11 (33) | 311

%e 39 | (1) 3, 13 (39) | 313

%p with(numtheory):

%p for k from 2 to 1000 do:

%p v0:=divisors(k):

%p nn:=nops(v0):

%p if nn > 2 then

%p v1:=[seq(v0[j],j=2..nn-1)]:

%p v2:=cat(seq(convert(v1[n],string),n=1..nops(v1))):

%p v3:=parse(v2):

%p if isprime(v3) = true then lprint(k,v3) fi:

%p fi:

%p od: # _Simon Plouffe_

%t fQ[n_] := PrimeQ@ FromDigits@ Most@ Rest@ Divisors@ n; Select[ Range[2, 320], fQ]

%o (Python)

%o from sympy import divisors, isprime

%o def ok(n):

%o s = "".join(str(d) for d in divisors(n)[1:-1])

%o return s != "" and isprime(int(s))

%o print([k for k in range(319) if ok(k)]) # _Michael S. Branicky_, Oct 01 2024

%Y Cf. A037274, A037278, A037279, A106708, A120713, A120716.

%Y Cf. A130139, A130140, A130141, A130142.

%K nonn,base

%O 1,1

%A _Eric Angelini_, Jul 19 2007

%E Name edited by _Michel Marcus_, Mar 09 2023