Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 03 2022 11:29:45
%S 2,4,8,11,18,22,29,33,40,51,54,64,72,76,84,94,104,109,120,127,132,142,
%T 150,161,174,181,186,194,199,207,230,238,248,252,270,275,285,297,305,
%U 317,327,331,349,353,361,365,386,407,415,419,426,438,442,460,471,482
%N Number of numbers >1 up to 2*prime(n) which are divisible by primes up to prime(n).
%C The first prime(n+1)-2 numbers >1 are divisible by primes up to prime(n).
%C Complement of A137624; A137621(a(n))=A000040(n); A137621(a(n)+1)=A100484(n). - _Reinhard Zumkeller_, Jan 30 2008
%H Robert Israel, <a href="/A120632/b120632.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A120633(n) + A040976(n+1) = A076274(n) - A070046(n).
%e a(4)=11 because exactly 11 numbers between 2 and 2*prime(4)=2*7=14, namely: 2,3,4,5,6,7,8,9,10,12,14 are divisible by the first four primes 2,3,5,7.
%p f:= proc(n) local p;
%p p:= ithprime(n); 2*p - numtheory:-pi(2*p)+n-1
%p end proc:
%p map(f, [$1..100]); # _Robert Israel_, Mar 02 2022
%o (PARI) a(n) = {nb = 0; for (i = 2, 2*prime(n), for (ip = 1, n, if ( !(i % prime(ip)), nb++; break;););); nb;} \\ _Michel Marcus_, Oct 26 2013
%Y Cf. A000040, A100484, A137621, A137624.
%Y Cf. A120633, A040976, A076274, A070046.
%K nonn
%O 1,1
%A _Lekraj Beedassy_, Jun 21 2006