Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 May 31 2022 06:48:06
%S 1,1,17,49,353,1441,8177,37969,198593,966721,4912337,24325489,
%T 122336033,609554401,3054149297,15251614609,76315468673,381405156481,
%U 1907542343057,9536162033329,47685459212513,238413348924961,1192108586037617,5960417405949649
%N For n>1, a(n) = 2*a(n-1) + 15*a(n-2); a(0)=1, a(1)=1.
%C Characteristic polynomial of matrix M = x^2 - 2x - 15. a(n)/a(n-1) tends to 5, largest eigenvalue of M and a root of the characteristic polynomial.
%C Binomial transform of [1, 0, 16, 0, 256, 0, 4096, 0, 65536, 0, ...]=: powers of 16 (A001025) with interpolated zeros. - _Philippe Deléham_, Dec 02 2008
%C a(n) is the number of compositions of n when there are 1 type of 1 and 16 types of other natural numbers. - _Milan Janjic_, Aug 13 2010
%H Vincenzo Librandi, <a href="/A120612/b120612.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,15).
%F Let M = the 2 X 2 matrix [1,4; 4,1], then a(n) = M^n * [1,0], left term.
%F From _Alexander Adamchuk_, Aug 31 2006: (Start)
%F a(n) = ( 5^n + (-1)^n * 3^n ) / 2.
%F a(2n+1) = A005059(2n+1).
%F a(2n) = A081186(2n). (End)
%F a(n) = Sum_{k=0..n} A098158(n,k)*16^(n-k). - _Philippe Deléham_, Dec 26 2007
%F If p(1)=1, and p(i)=16, (i > 1), and if A is Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1), (i <= j), A(i,j)=-1, (i = j+1), and A(i,j)=0 otherwise. Then, for n >= 1, a(n)=det A. - _Milan Janjic_, Apr 29 2010
%e a(4) = 353 = 2*49 + 15*17 = 2*a(3) + 15*a(2).
%t Table[(5^n+(-1)^n*3^n)/2,{n,1,30}] (* _Alexander Adamchuk_, Aug 31 2006 *)
%t a[n_] := (5^n + (-3)^n)/2; Array[a, 24, 0] (* Or *)
%t CoefficientList[Series[(1 + 15 x)/(1 - 2 x - 15 x^2), {x, 0, 23}], x] (* Or *)
%t LinearRecurrence[{2, 15}, {1, 1}, 25] (* Or *)
%t Table[ MatrixPower[{{1, 2}, {8, 1}}, n][[1, 1]], {n, 0, 30}] (* _Robert G. Wilson v_, Sep 18 2013 *)
%o (PARI) a(n)=([1,4; 4,1]^n)[1,1] \\ _Charles R Greathouse IV_, Oct 16 2013
%o (PARI) concat(1, Vec((15*x+1)/(-15*x^2-2*x+1) + O(x^100))) \\ _Colin Barker_, Mar 12 2014
%o (PARI) a(n) = ( 5^n + (-1)^n * 3^n ) / 2 \\ _Charles R Greathouse IV_, May 18 2015
%Y Cf. A005059, A081186, A059841.
%K nonn,easy
%O 0,3
%A _Gary W. Adamson_, Jun 17 2006
%E More terms from _Alexander Adamchuk_, Aug 31 2006
%E Entry revised by _Philippe Deléham_, Dec 02 2008
%E More terms from _Colin Barker_, Mar 12 2014