login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120445
Number of different convex inscribed polygons with n pair of sides of lengths d1, d2, ..., dn all distinct. Or number of bracelets with n pairs of beads, each pair of one among n colors.
1
1, 2, 11, 171, 5736, 312240, 24327000, 2554072920, 347351195520, 59397023589120, 12473374574505600, 3155763762320400000, 946729128624509260800, 332301924146113021900800, 134914581203304233287756800, 62735280259536165098353536000, 33124227977035089658775531520000
OFFSET
1,2
LINKS
Ignacio Larrosa Cañestro, Marko Riedel, n-digonos.
FORMULA
a(n) = ((2n)!/2^n + (2n+1)*n!)/(4n).
a(n) ~ sqrt(Pi)*2^n*n^(2*n-1/2)/(2*exp(2*n)). - Ilya Gutkovskiy, Nov 21 2016
EXAMPLE
a(2) = 2 because there are two quadrilaterals with sides {1, 1, 2, 2}: a kite and a rectangle.
MATHEMATICA
Table[((2 n)! / 2^n + (n + 1) n! + n n!) / (4 n), {n, 20}] (* Vincenzo Librandi, Nov 22 2016 *)
PROG
(Magma) [(Factorial(2*n)/2^n+(n+1)*Factorial(n)+n*Factorial(n))/(4*n): n in [1..20]]; // Vincenzo Librandi, Nov 22 2016
(PARI) for(n=1, 25, print1(((2*n)!/2^n + (2*n+1)*n!)/(4*n), ", ")) \\ G. C. Greubel, May 25 2017
CROSSREFS
Sequence in context: A378046 A013050 A051255 * A003088 A121231 A122527
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name clarified by Marko Riedel, Nov 22 2016
STATUS
approved