login
Let p(1) = 13. Then a(n) is the least k such that p(n+1) = (k*p(n))^2 + k*p(n) - 1 is prime.
4

%I #11 Apr 22 2012 13:41:07

%S 1,1,4,4,10,1,351,240,620,1362,2184,46,2944

%N Let p(1) = 13. Then a(n) is the least k such that p(n+1) = (k*p(n))^2 + k*p(n) - 1 is prime.

%C p sequence starts 181, 32941, 17361883459, 4822959955971812408731, ...

%C a(13) corresponds to a 12,272-digit BPSW-probable prime. - _Charles R Greathouse IV_, Apr 22 2012

%o (PARI) p=13;for(i=1,9,k=1;while(!ispseudoprime(t=(k*p)^2+k*p-1),k++); p=t; print1(k", ")) \\ _Charles R Greathouse IV_, Apr 20 2012

%K nonn

%O 1,3

%A _Pierre CAMI_, Jul 01 2006

%E a(9)-a(12) from _Charles R Greathouse IV_, Apr 20 2012

%E a(13) from _Charles R Greathouse IV_, Apr 22 2012