login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120351
Even numbers k such that the number of odd divisors r and the number of even divisors s are both divisors of k.
2
2, 4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 34, 36, 38, 44, 46, 48, 52, 58, 62, 68, 72, 74, 76, 80, 82, 86, 90, 92, 94, 106, 112, 116, 118, 120, 122, 124, 126, 134, 142, 144, 146, 148, 150, 158, 160, 164, 166, 168, 172, 176, 178, 180, 188, 192, 194, 198, 202, 206
OFFSET
1,1
COMMENTS
Since s=0 if k is odd, the number k is necessarily even and then s is always a multiple of r. Note that t=r+s may not be a divisor even if both r and s are divisors. For example, if k=144, then r=3, s=12, but t=r+s=15.
LINKS
FORMULA
a(n) = n is even, r = number of odd divisors of n, s = number of even divisors of n, are all divisors of n.
EXAMPLE
16 is a term since r=1 and s=4 are both divisors.
MAPLE
with(numtheory); A:=[]: N:=10^4/2: for w to 1 do for k from 2 to N do n:=2*k; S:=divisors(n); r:=nops( select(z->type(z, odd), S) ); s:=nops( select(z->type(z, even), S) ); if andmap(z -> n mod z = 0, [r, s]) then A:=[op(A), n]; print(n, r, s); fi; od od; A;
MATHEMATICA
aQ[n_] := Divisible[n, (ev = DivisorSigma[0, n/2])] && Divisible[n, DivisorSigma[0, n] - ev]; Select[Range[2, 206, 2], aQ] (* Amiram Eldar, Nov 02 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jun 24 2006
EXTENSIONS
Term 2 inserted by Amiram Eldar, Nov 02 2019
STATUS
approved