The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120347 Numerator of Sum[ 1/k^n, {k,1,n-1} ]. 2
 1, 9, 1393, 257875, 47463376609, 940908897061, 972213062238348973121, 7727182467755471289426059, 10338014371627802833957102351534201, 26038773205374138944970092886340352227, 205885410277133543091182509665217407908365393153956577 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Prime p>2 divides a(p). p^3 divides a(p) for prime p>3. p divides a((p+1)/2) for prime p = {7,11,17,19,23,31,41,43,47,59,67,71,73,79,83,89,97,103,...} = all primes excluding 2 and 3 from A045323[n] Primes congruent to {1, 2, 3, 7} mod 8. a(n) = Numerator[ H(n-1,n) ], where H(k,r)= Sum[ 1/i^r, {i,1,k} ] is generalized harmonic number. Numerators of Sum[ 1/k^p, {k,1,p-1} ]], where p = Prime[n], are listed in A120352(n) = {1, 9, 257875, 940908897061, 26038773205374138944970092886340352227, ...}. a(p)/p^3 for prime p>3 are listed in A119722(n) = {2063, 2743174627, 19563315706517008974432827112201617, ...}. LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..49 Eric Weisstein's World of Mathematics, Wolstenholme's Theorem Eric Weisstein's World of Mathematics, Harmonic Number FORMULA a(n) = Numerator[Sum[1/k^n,{k,1,n-1}]]. a(n) = Numerator[Zeta[n] - Zeta[n,n]]. MATHEMATICA Table[Numerator[Sum[1/k^n, {k, 1, n-1}]], {n, 2, 15}] CROSSREFS Cf. A045323, A120289, A120352, A119722. Sequence in context: A117053 A270067 A213448 * A230172 A231191 A217267 Adjacent sequences:  A120344 A120345 A120346 * A120348 A120349 A120350 KEYWORD nonn,frac AUTHOR Alexander Adamchuk, Aug 16 2006, Oct 31 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 23:41 EDT 2021. Contains 343868 sequences. (Running on oeis4.)