OFFSET
2,2
COMMENTS
Prime p>2 divides a(p). p^3 divides a(p) for prime p>3. p divides a((p+1)/2) for prime p = {7,11,17,19,23,31,41,43,47,59,67,71,73,79,83,89,97,103,...} = all primes excluding 2 and 3 from A045323[n] Primes congruent to {1, 2, 3, 7} mod 8.
a(n) = Numerator( H(n-1,n) ), where H(k,r) = Sum_{i=1..k} 1/i^r is the generalized harmonic number.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 2..49
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
Eric Weisstein's World of Mathematics, Harmonic Number
FORMULA
a(n) = Numerator(Sum_{k=1..n-1} 1/k^n). a(n) = Numerator[Zeta[n] - Zeta[n,n]].
MATHEMATICA
Table[Numerator[Sum[1/k^n, {k, 1, n-1}]], {n, 2, 15}]
CROSSREFS
KEYWORD
nonn,frac,changed
AUTHOR
Alexander Adamchuk, Aug 16 2006, Oct 31 2006
STATUS
approved