login
Number of permutations avoiding 3142, 25314, 246135 and 362514.
0

%I #4 Mar 31 2012 20:08:09

%S 1,2,6,23,102,492,2498,13130,70800,389446,2176802,12328552,70597568,

%T 408061604,2377643974,13950607135,82355028006,488797440712,

%U 2915087969496,17459865132260,104981190319396,633438776314456

%N Number of permutations avoiding 3142, 25314, 246135 and 362514.

%C These permutations are the wreath closure of 1, 12, 21 and 2413.

%H R. Brignall, S. Huczynska and V. Vatter, <a href="http://arXiv.org/abs/math.CO/0608391">Simple permutations and algebraic generating functions</a>, arXiv:math.CO/0608391.

%F G.f. satisfies f^5+f^4+f^2+(x-1)f+x=0.

%e a(4)=23 because all permutations of length 4 except 3142 lies in this set.

%K nonn

%O 1,2

%A _Vincent Vatter_, Aug 16 2006