|
|
A120319
|
|
RF(3): refactorable numbers with smallest prime factor 3.
|
|
1
|
|
|
9, 225, 441, 1089, 1521, 2025, 2601, 3249, 4761, 5625, 6561, 7569, 8649, 12321, 15129, 16641, 19881, 25281, 31329, 33489, 35721, 40401, 45369, 47961, 50625, 56169, 62001, 71289, 84681, 91809, 95481, 99225, 103041, 106929, 114921, 145161, 154449, 164025, 168921
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers that are odd squares, 3 is their smallest prime factor, and are refactorable.
See A033950 for references. For any prime p, p^(p-1) is the smallest element of RF(p), the refactorable numbers whose smallest prime factor is p. Thus 3^(3-1)=9 is the first element. Other elements would also be 3^2*17^2 or 3^16*17^2.
|
|
LINKS
|
|
|
MAPLE
|
with(numtheory); RF3:=[]: p:=3: for w to 1 do for j from 1 to 12^3 do k:=2*j+1; if k mod p = 0 then n:=k^2; t:=tau(n); if (n mod t = 0) then RF3:=[op(RF3), n]; print(ifactor(n)); fi fi; od od;
|
|
PROG
|
(PARI) lista(kmax) = forstep(k = 3, kmax, 6, if(!(k^2 % numdiv(k^2)), print1(k^2, ", "))); \\ Amiram Eldar, Aug 01 2024
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|