login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2 + floor((1 + Sum_{j=1..n-1} a(j))/4).
1

%I #14 Mar 07 2024 11:13:39

%S 2,2,3,4,5,6,7,9,11,14,18,22,28,35,43,54,68,85,106,132,165,207,258,

%T 323,404,505,631,789,986,1232,1540,1925,2407,3008,3760,4700,5875,7344,

%U 9180,11475,14344,17930,22412,28015,35019,43774,54717,68397,85496,106870

%N a(n) = 2 + floor((1 + Sum_{j=1..n-1} a(j))/4).

%H G. C. Greubel, <a href="/A120161/b120161.txt">Table of n, a(n) for n = 1..1000</a>

%t f[s_]:= Append[s, Floor[(9 +Plus @@ s)/4]]; Nest[f, {2}, 49] (* _Robert G. Wilson v_, Jul 08 2006 *)

%o (Magma)

%o function f(n, a, b)

%o t:=0;

%o for k in [1..n-1] do

%o t+:= a+Floor((b+t)/4);

%o end for;

%o return t;

%o end function;

%o g:= func< n, a, b | f(n+1,a,b)-f(n,a,b) >;

%o A120161:= func< n | g(n,2,1) >;

%o [A120161(n): n in [1..60]]; // _G. C. Greubel_, Sep 02 2023

%o (SageMath)

%o @CachedFunction

%o def f(n,p,q): return p + (q + sum(f(k,p,q) for k in range(1,n)))//4

%o def A120161(n): return f(n,2,1)

%o [A120161(n) for n in range(1,61)] # _G. C. Greubel_, Sep 02 2023

%Y Cf. A072493, A073941, A112088.

%K nonn

%O 1,1

%A _Graeme McRae_, Jun 10 2006

%E More terms from _Robert G. Wilson v_, Jul 08 2006

%E Name edited by _G. C. Greubel_, Sep 02 2023