login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle A120073 (denominator triangle for H atom spectrum).
6

%I #7 Apr 25 2023 06:18:50

%S 4,45,176,750,1101,4459,6080,13284,16350,46585,33954,109850,92463,

%T 142705,198400,432344,255096,761349,500355,824866,925529,2007555,

%U 1044616,2612500,2158130,3301641,2848741

%N Row sums of triangle A120073 (denominator triangle for H atom spectrum).

%H G. C. Greubel, <a href="/A120075/b120075.txt">Table of n, a(n) for n = 2..1000</a>

%F a(n) = Sum_{k=1..n-1} A120073(n,k), for n >= 2.

%t A120075[n_]:= Sum[Denominator[1/k^2 -1/n^2], {k,n-1}];

%t Table[A120075[n], {n,2,50}] (* _G. C. Greubel_, Apr 24 2023 *)

%o (Magma)

%o A120073:= func< n,k | Denominator(1/k^2 - 1/n^2) >;

%o [(&+[A120073(n,k): k in [1..n-1]]): n in [2..50]]; // _G. C. Greubel_, Apr 24 2023

%o (SageMath)

%o def A120073(n,k): return denominator(1/k^2 - 1/n^2)

%o [sum(A120073(n,k) for k in range(1,n)) for n in range(2,51)] # _G. C. Greubel_, Apr 24 2023

%Y Cf. A120070, A120072, A120073, A120074, A120076, A120077.

%K nonn,easy

%O 2,1

%A _Wolfdieter Lang_, Jul 20 2006