login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Continued fraction expansion of the value of Minkowski's question mark function at Levy's constant (Exp[Pi^2/(12*Log[2])], A086702).
1

%I #4 Jul 10 2011 18:41:28

%S 3,6,10,2,8388607,1,1,10,5,1,19802808501020211999048785114,1,5,1,5,2,

%T 2,10,4,1,142,3,1,1,1,1,1,2,13,16,1,83,2,4,1,15,1,62,1,20,1,2,1,1,1,9,

%U 1,1,1,13,2,3,1,4,1,5,1,1,1,5,7,1,27,1,2,4,3,1,3,3,1,7,2,1,1,91,11,1,2,4,4

%N Continued fraction expansion of the value of Minkowski's question mark function at Levy's constant (Exp[Pi^2/(12*Log[2])], A086702).

%C a[92] has over 150 decimal digits, making 750332738256083509758042341909438953923620244270237443771885409340366143805720089/2^267 an excellent approximation to the constant.

%H <a href="/index/Me#MinkowskiQ">Index entries for Minkowski's question mark function</a>

%H <a href="/index/Me#MinkowskiQ">Index entries for sequences related to Minkowski's question mark function</a>

%t ContinuedFraction[cf = ContinuedFraction[Exp[Pi^2/(12*Log[2])], 50(*arbitrary precision*)]; IntegerPart[Exp[Pi^2/(12*Log[2])]] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}]]

%Y Cf. A120029.

%K cofr,nonn

%O 0,1

%A Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 04 2006