login
Square table, read by antidiagonals, of self-compositions of A120010.
4

%I #3 Mar 30 2012 18:36:57

%S 1,1,1,1,2,1,1,3,4,2,1,4,9,10,6,1,5,16,30,32,18,1,6,25,68,114,116,53,

%T 1,7,36,130,312,480,440,158,1,8,49,222,710,1536,2157,1708,481,1,9,64,

%U 350,1416,4070,8000,10092,6760,1491,1,10,81,520,2562,9348,24365,43472,48525

%N Square table, read by antidiagonals, of self-compositions of A120010.

%C The g.f. of row n is the composition: (1-sqrt(1-4*x))/2 o x/(1-nx) o (x-x^2).

%F T(n, k) = Sum_{j=1..k}Catalan(k-j)*[Sum_{i=1..j}(-1)^(j-i)*n^(i-1)*C(k-j+i, j-i)*C(k-j+i-1, i-1)]; Also, T(n, k) = Sum_{j=0..k-1}n^j*[Sum_{i=j..k-1}(-1)^(i-j)*Catalan(k-i-1)*C(k-i+j, i-j)*C(k-i+j-1, j)]; where Catalan(n) = A000108(n) = C(2n, n)/(n+1).

%e Square table begins:

%e 1, 1, 1, 2, 6, 18, 53, 158, 481, 1491, ...

%e 1, 2, 4, 10, 32, 116, 440, 1708, 6760, 27232, ...

%e 1, 3, 9, 30, 114, 480, 2157, 10092, 48525, 238143, ...

%e 1, 4, 16, 68, 312, 1536, 8000, 43472, 243808, 1400448, ...

%e 1, 5, 25, 130, 710, 4070, 24365, 151330, 968785, 6355795, ...

%e 1, 6, 36, 222, 1416, 9348, 63768, 448188, 3234216, 23875296, ...

%e 1, 7, 49, 350, 2562, 19236, 148085, 1167488, 9409645, 77367087, ...

%e 1, 8, 64, 520, 4304, 36320, 312512, 2740672, 24476800, 222358528, ...

%e 1, 9, 81, 738, 6822, 64026, 610245, 5906502, 58033953, 578488563, ...

%e 1, 10, 100, 1010, 10320, 106740, 1117880, 11855660, 127313320, ...

%e Successive self-compositions of F(x), the g.f. of A120010, begin:

%e F(x) = x + x^2 + x^3 + 2x^4 + 6x^5 + 18x^6 + 53x^7 + 158x^8 +...

%e F(F(x)) = x + 2x^2 + 4x^3 + 10x^4 + 32x^5 + 116x^6 + 440x^7 +...

%e F(F(F(x))) = x + 3x^2 + 9x^3 + 30x^4 + 114x^5 + 480x^6 + 2157x^7 +...

%e F(F(F(F(x)))) = x + 4x^2 + 16x^3 + 68x^4 + 312x^5 + 1536x^6 +...

%e F(F(F(F(F(x))))) = x + 5x^2 + 25x^3 + 130x^4 + 710x^5 + 4070x^6 +...

%e F(F(F(F(F(F(x)))))) = x + 6x^2 + 36x^3 + 222x^4 + 1416x^5 + 9348x^6 +...

%o (PARI) {T(n,k)=sum(j=1, k, binomial(2*k-2*j, k-j)/(k-j+1)* sum(i=1, j,(-1)^(j-i)*binomial(k-j+i, j-i)*binomial(k-j+i-1, i-1)*n^(i-1)))}

%Y Rows: A120010, A120017, A120018; Diagonals: A120020, A120021. Variant: A120013.

%K nonn,tabl

%O 1,5

%A _Paul D. Hanna_, Jun 14 2006