Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 07 2022 08:13:37
%S 0,10,12,21,102,112,123,213,312,412,512,612,712,812,912,1012,1023,
%T 1123,1213,1234,1324,1423,2113,2134,3124,4123,5123,6123,7123,8123,
%U 9123,10123,10234,11213,11234,12134,12345,13245,14235,15234,16234,17234,18234,19234,21134,21345
%N Where record values of A119999 occur.
%C A120000(n)=A119999(a(n)) and A119999(m) < A120000(n) for m<a(n);
%C problem: smallest m>1023456789 such that A119999(m)>A119999(1023456789)?
%C From _David A. Corneth_, Sep 07 2022: (Start)
%C Does every term >= 10 contain the digit 1?
%C Does every term >= 12 contain the digits 1 and 2?
%C Does every term >= 1023 contain the digits 1, 2 and 3?
%C Does every term >= 11234 contain the digits 1, 2, 3 and 4?
%C Does every term >= 112345 contain the digits 1, 2, 3, 4 and 5? (End)
%H David A. Corneth, <a href="/A120001/b120001.txt">Table of n, a(n) for n = 1..51</a>
%e 21 is in the sequence as A119999(21) = 12 and 12 is the largest value of A119999(k) for k in [0, 21]. - _David A. Corneth_, Sep 07 2022
%Y Cf. A001399, A001400, A004526, A119999, A120000.
%K nonn,base
%O 1,2
%A _Reinhard Zumkeller_, Jun 13 2006
%E More terms from _David A. Corneth_, Sep 07 2022