login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of all matrix elements of n X n matrix M[i,j] = (-1)^(i+j)*Fibonacci[i+j-1].
1

%I #17 Jun 13 2015 00:52:06

%S 1,1,4,5,17,32,97,225,628,1573,4225,10880,28769,74849,196708,513765,

%T 1347025,3523360,9229441,24154625,63251156,165571781,433507969,

%U 1134881280,2971250497,7778684737,20365103812,53316141125,139584105233,365434903328,956722661665

%N Sum of all matrix elements of n X n matrix M[i,j] = (-1)^(i+j)*Fibonacci[i+j-1].

%C Prime p divides a(p-1) for p={5,11,19,29,31,41,59,61,71,...} = A038872[n] Primes congruent to {0, 1, 4} mod 5. Also odd primes where 5 is a square mod p. p^2 divides a(p-1) for prime p={11,19,29,31,41,59,61,71,...} = A045468[n] Primes congruent to {1, 4} mod 5. Square prime divisors of a(n) up to n=50 are{2,3,5,7,11,13,19,23,29,31,41,47,89,101,139,151,199,211,461,521,3571,9349}, It appears that square prime divisors of a(n) belong to A061446[n] Primitive part of Fibonacci(n), A001578[n] Smallest primitive prime factor of Fibonacci number F(n) and A072183[n] Sequence arising from factorization of the Fibonacci numbers. Sum[Sum[Fibonacci[i+j-1],{i,1,n}],{j,1,n}] = A120297[n]. Sum[Sum[i+j-1,{i,1,n}],{j,1,n}] = n^3. Sum[Sum[(-1)^(i+j)*(i+j-1),{i,1,n}],{j,1,n}] = n for odd n and = 0 for even n.

%H Colin Barker, <a href="/A119997/b119997.txt">Table of n, a(n) for n = 1..1000</a> [Terms up to n=200 from _Vincenzo Librandi_]

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-7,5,-1).

%F a(n) = Sum[Sum[(-1)^(i+j)*Fibonacci[i+j-1],{i,1,n}],{j,1,n}].

%F a(n) = 3*a(n-1)+a(n-2)-7*a(n-3)+5*a(n-4)-a(n-5) for n>5. - _Colin Barker_, Mar 26 2015

%F G.f.: -x*(x^3+2*x-1) / ((x-1)*(x^2-3*x+1)*(x^2-x-1)). - _Colin Barker_, Mar 26 2015

%e Matrix begins:

%e 1 -1 2 -3 5

%e -1 2 -3 5 -8

%e 2 -3 5 -8 13

%e -3 5 -8 13 -21

%e 5 -8 13 -21 34

%t Table[Sum[Sum[(-1)^(i+j)*Fibonacci[i+j-1],{i,1,n}],{j,1,n}],{n,1,50}]

%o (PARI) a(n) = sum(i=1, n, sum(j=1, n, (-1)^(i+j)*fibonacci(i+j-1))) \\ _Colin Barker_, Mar 26 2015

%o (PARI) Vec(-x*(x^3+2*x-1)/((x-1)*(x^2-3*x+1)*(x^2-x-1)) + O(x^100)) \\ _Colin Barker_, Mar 26 2015

%Y Cf. A120297, A000045, A038872, A001924, A062381, A038872, A045468, A061446, A001578, A072183.

%K nonn,easy

%O 1,3

%A _Alexander Adamchuk_, Aug 03 2006