The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119929 Decimal expansion of the value of Minkowski's question mark function at Khinchin's constant (A002210). 1
 2, 7, 5, 5, 5, 0, 8, 4, 0, 9, 9, 8, 7, 6, 6, 9, 4, 4, 0, 0, 2, 5, 2, 9, 1, 9, 6, 9, 5, 1, 5, 5, 9, 1, 7, 6, 1, 2, 0, 8, 3, 8, 4, 0, 1, 4, 0, 2, 6, 3, 9, 4, 8, 8, 9, 7, 7, 5, 4, 3, 3, 1, 2, 4, 4, 1, 1, 2, 3, 1, 4, 2, 4, 5, 5, 5, 3, 5, 1, 7, 0, 2, 9, 2, 5, 6, 7, 1, 4, 2, 9, 3, 0, 8, 4, 3, 0, 4, 1, 3, 1, 4, 6, 2, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE 2.755508409987669440025291969515591761208384014026394889775... MATHEMATICA (*ensure variables are appropriately Cleared*) Off[ContinuedFraction::incomp]; mq[x_] := (If[Element[x, Rationals], cf = ContinuedFraction[x], cf = ContinuedFraction[x, 80(*arbitrary precision*)]]; IntegerPart[x] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}]); RealDigits[mq[Khinchin], 10] RealDigits[(cf = ContinuedFraction[Khinchin, 80(*arbitrary precision*)]; IntegerPart[Khinchin] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}]), 10] CROSSREFS Cf. A119928. Sequence in context: A021788 A019640 A240885 * A195070 A352619 A151856 Adjacent sequences:  A119926 A119927 A119928 * A119930 A119931 A119932 KEYWORD cons,nonn AUTHOR Joseph Biberstine (jrbibers(AT)indiana.edu), May 29 2006; corrected Jun 04 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 14:36 EDT 2022. Contains 354037 sequences. (Running on oeis4.)