login
Integers i such that bigomega(i) (A001222) and tau(i) (A000005) are both even.
32

%I #8 Jun 21 2021 00:05:49

%S 6,10,14,15,21,22,24,26,33,34,35,38,39,40,46,51,54,55,56,57,58,60,62,

%T 65,69,74,77,82,84,85,86,87,88,90,91,93,94,95,96,104,106,111,115,118,

%U 119,122,123,126,129,132,133,134,135,136,140,141,142,143,145,146,150

%N Integers i such that bigomega(i) (A001222) and tau(i) (A000005) are both even.

%C Also numbers whose alternating sum of prime indices is < 0. Equivalently, numbers with even bigomega whose conjugate prime indices are not all even. This is the intersection of A028260 and A000037. - _Gus Wiseman_, Jun 20 2021

%e From _Gus Wiseman_, Jun 20 2021: (Start)

%e The sequence of terms together with their prime indices begins:

%e 6: {1,2} 51: {2,7} 86: {1,14}

%e 10: {1,3} 54: {1,2,2,2} 87: {2,10}

%e 14: {1,4} 55: {3,5} 88: {1,1,1,5}

%e 15: {2,3} 56: {1,1,1,4} 90: {1,2,2,3}

%e 21: {2,4} 57: {2,8} 91: {4,6}

%e 22: {1,5} 58: {1,10} 93: {2,11}

%e 24: {1,1,1,2} 60: {1,1,2,3} 94: {1,15}

%e 26: {1,6} 62: {1,11} 95: {3,8}

%e 33: {2,5} 65: {3,6} 96: {1,1,1,1,1,2}

%e 34: {1,7} 69: {2,9} 104: {1,1,1,6}

%e 35: {3,4} 74: {1,12} 106: {1,16}

%e 38: {1,8} 77: {4,5} 111: {2,12}

%e 39: {2,6} 82: {1,13} 115: {3,9}

%e 40: {1,1,1,3} 84: {1,1,2,4} 118: {1,17}

%e 46: {1,9} 85: {3,7} 119: {4,7}

%e (End)

%t Select[Range[200],And@@EvenQ[{PrimeOmega[#],DivisorSigma[0,#]}]&] (* _Harvey P. Dale_, Jan 24 2013 *)

%Y Superset: A119847. Subset: A006881. The intersection of A028260 and A000037.

%Y Positions of negative terms in A316524.

%Y The partitions with these Heinz numbers are counted by A344608.

%Y Complement of A344609.

%Y Cf. A000041, A000070, A000097, A027187, A103919, A116406, A239829, A239830, A343941, A344607, A344651.

%K nonn

%O 1,1

%A _Antti Karttunen_, Jun 04 2006