login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119857
Number of equicolored (unrooted) trees on 2n nodes.
4
1, 1, 4, 14, 65, 316, 1742, 10079, 61680, 391473, 2565262, 17237962, 118341446, 827194809, 5872518213, 42256545977, 307681822711, 2263881127801, 16813356777456, 125917441081662, 950148951332802, 7218810159035143, 55187741462110393, 424318236236124092
OFFSET
1,3
COMMENTS
For precise definition, recurrence and asymptotics see the Pippenger reference.
LINKS
N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.
PROG
(PARI) \\ R is b.g.f of rooted trees x nodes, y in one part
R(n)={my(A=O(x)); for(j=1, 2*n, A = if(j%2, 1, y)*x*exp(sum(i=1, j, 1/i * subst(subst(A + x * O(x^(j\i)), x, x^i), y, y^i)))); A};
seq(n)={my(A=Pol(R(n))); my(r(x, y)=substvec(A, ['x, 'y], [x, y/x])); Vec(polcoeff((r(x, y/x) + r(y/x, x) - r(x, y/x)*r(y/x, x)), 0) + O(y*y^n))} \\ Andrew Howroyd, May 23 2018
CROSSREFS
Main diagonal of A329054.
Sequence in context: A184265 A020041 A081891 * A305654 A241465 A320488
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 04 2006
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, May 21 2018
STATUS
approved