login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119833
Primes p such that 2*p#-1 is prime.
2
2, 3, 5, 7, 17, 19, 37, 71, 79, 113, 857, 863, 16361, 62989
OFFSET
1,1
EXAMPLE
2*2 - 1 = 3, 3 prime so a(1)=2;
2*2*3 - 1 = 11, 11 prime so a(2)=3;
2*2*3*5 - 1 = 59, 59 prime so a(3)=5.
MATHEMATICA
Module[{nn=900, pr, pl}, pr=Prime[Range[nn]]; pl=FoldList[Times, pr]; Select[ Thread[{pr, pl}], PrimeQ[2*#[[2]]-1]&][[All, 1]]] (* Harvey P. Dale, May 02 2018 *)
PROG
(Magma) [p:p in PrimesUpTo(4000)|IsPrime(2*&*PrimesUpTo(p)-1)]; // Marius A. Burtea, Mar 25 2019
(Python)
from sympy import isprime, nextprime
def afind(limit):
p = 2
twoprimorialp = 4
while p <= limit:
if isprime(twoprimorialp - 1):
print(p, end=", ")
p = nextprime(p)
twoprimorialp *= p
afind(1000) # Michael S. Branicky, Jan 08 2022
CROSSREFS
Sequence in context: A059498 A247147 A158085 * A127049 A142885 A108547
KEYWORD
nonn,more
AUTHOR
Pierre CAMI, May 25 2006
EXTENSIONS
a(13) from Michael S. Branicky, Jan 08 2022
a(14) from Michael S. Branicky, May 14 2023
STATUS
approved