Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Aug 27 2013 02:03:12
%S 1,4,33,436,8015,189596,5494797,188692708,7494744807,338103170428,
%T 17079035749061,955117390512858,58584586487137113,3910851585418994256,
%U 282272352712037938081,21904366942822876046020
%N Coefficients of x^n in the n-th iteration of x/(1-x)^2 for n>=1.
%C The coefficient of x^n in the n-th iteration of x/(1-x) = n^(n-1) = A000169(n); does this variant have a simple formula for a(n)?
%F a(n) = [x^n] F_n(x) where F_n(x) = F_{n-1}(F(x)) with F(x) = x/(1-x)^2.
%e The successive iterations of F(x) = x/(1-x)^2 begin:
%e F(x) = (1)x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + 6x^6 + 7x^7 + 8x^8 +...
%e F(F(x)) = x + (4)x^2 + 14x^3 + 46x^4 + 145x^5 + 444x^6 + 1331x^7 +...
%e F(F(F(x))) = x + 6x^2 + (33)x^3 + 174x^4 + 892x^5 + 4480x^6 +...
%e F(F(F(F(x)))) = x + 8x^2 + 60x^3 + (436)x^4 + 3102x^5 + 21728x^6 +...
%e F(F(F(F(F(x))))) = x + 10x^2 + 95x^3 + 880x^4 + (8015)x^5 +72090x^6+..
%e F(F(F(F(F(F(x)))))) = x + 12x^2+138x^3+1554x^4+17255x^5+(189596)x^6+..
%o (PARI) {a(n)=local(F=x/(1-x)^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))}
%Y Cf. A119820, A112317; A119819, A119817, A119815.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jun 01 2006