login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of x^n in the n-th iteration of x*(1+x)^2 for n>=1.
7

%I #5 Aug 27 2013 02:02:37

%S 1,4,27,300,4790,101010,2660028,84191772,3115739358,132074618544,

%T 6311492388432,335744715016854,19678501474466211,1260060524755139120,

%U 87519840721085385096,6553840567691077634748,526360263009035464610574

%N Coefficients of x^n in the n-th iteration of x*(1+x)^2 for n>=1.

%F a(n) = [x^n] F_n(x) where F_n(x) = F_{n-1}(F_1(x)) with F_1(x) = x*(1+x)^2.

%e The successive iterations of F(x) = x*(1+x)^2 begin:

%e F(x) = (1)x + 2x^2 + x^3

%e F(F(x)) = x + (4)x^2 + 10x^3 + 18x^4 + 23x^5 + 22x^6 + 15x^7 + 6x^8 +...

%e F(F(F(x))) = x + 6x^2 + (27)x^3 + 102x^4 + 333x^5 + 960x^6 + 2472x^7 +...

%e F(F(F(F(x)))) = x + 8x^2 + 52x^3 + (300)x^4 + 1578x^5 + 7692x^6 +...

%e F(F(F(F(F(x))))) = x + 10x^2 + 85x^3 + 660x^4 + (4790)x^5 + 32920x^6+...

%e F(F(F(F(F(F(x)))))) = x + 12x^2 +126x^3 +1230x^4+11385x^5+(101010)x^6+...

%o (PARI) {a(n)=local(F=x*(1+x)^2, G=x+x*O(x^n)); if(n<1, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

%Y Cf. A119821, A112317, A119819, A119817, A119815.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jun 01 2006