login
Numerator of generalized harmonic number H(p-1,p)= Sum[ 1/k^p, {k,1,p-1}] divided by p^3 for prime p>3.
9

%I #5 Jan 04 2013 11:54:26

%S 2063,2743174627,19563315706517008974432827112201617,

%T 2597378078067393746941400113704449589199274012223316613,

%U 777478358612529699991463948563778410644748121498526065585976638854277886379480749840301120148933

%N Numerator of generalized harmonic number H(p-1,p)= Sum[ 1/k^p, {k,1,p-1}] divided by p^3 for prime p>3.

%C Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,p) is divisible by p^3 for prime p>3.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WolstenholmesTheorem.html">Wolstenholme's Theorem</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>

%F a(n) = numerator[ Sum[ 1/k^Prime[n], {k,1,Prime[n]-1} ]] / Prime[n]^3 for n>2.

%e Prime[3] = 5.

%e a(3) = numerator[ 1 + 1/2^5 + 1/3^5 + 1/4^5 ] / 5^3 = 257875/125 = 2063.

%e Prime[4] = 7

%e a(4) = numerator[ 1 + 1/2^7 + 1/3^7 + 1/4^7 + 1/5^7 + 1/6^7 ] / 7^3 = 2743174627.

%t Numerator[Table[Sum[1/k^Prime[n],{k,1,Prime[n]-1}],{n,3,9}]]/Table[Prime[n]^3,{n,3,9}]

%Y Cf. A099828, A099827, A001008, A007406, A007408, A007410.

%K frac,nonn

%O 3,1

%A _Alexander Adamchuk_, Jun 13 2006