login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119680 Prime numbers obtained by inserting a 0 between each pair of adjacent digits of a prime number > 10. 1
101, 103, 107, 109, 307, 401, 503, 509, 601, 607, 701, 709, 809, 907, 10007, 10009, 10103, 10301, 10501, 10607, 10709, 10903, 10909, 20101, 20507, 20707, 20903, 30103, 30307, 30509, 30703, 30803, 30809, 40009, 40507, 40709, 50707, 50909, 60103, 60107, 60509 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
From Rémy Sigrist, Oct 08 2017: (Start)
See A159236 for the original prime numbers.
The least prime numbers > 10 remaining prime during exactly k iterations of the operation of inserting a 0 between each pair of adjacent digits are, for small values of k:
k prime
- -----
0 23
1 11
2 19
3 17
4 220333
5 8677267
(End)
LINKS
EXAMPLE
The first four terms arise from 11 -> 101, 13 -> 103, 17 -> 107, 19 -> 109.
23 -> 203 is not prime, so 203 is not a term.
MATHEMATICA
a = Table[Table[Mod[Floor[Prime[m]/10^n], 10], {n, 4, 0, -1}], {m, 5, 200}]; Dimensions[a] b = Table[Sum[(If[Mod[n - 1, 2] == 0, a[[m, 1 + Floor[(n - 1)/2]]], 0])*10^(9 - n), {n, 1, 9}], {m, 1, 195}]; c = Flatten[Table[If[PrimeQ[b[[m]]], b[[m]], {}], {m, 1, 195}]]
PROG
(PARI) forprime (p=10, 599, if (isprime(pp=fromdigits(digits(p), 100)), print1 (pp ", "))) \\ Rémy Sigrist, Oct 08 2017
(Python)
from itertools import count, islice
from sympy import isprime, nextprime
def ok(n):
return n > 10 and isprime(n) and isprime(int("0".join(list(str(n)))))
def agen():
p = 11
while True:
t = int("0".join(list(str(p))))
if isprime(t): yield t
p = nextprime(p)
print(list(islice(agen(), 50))) # Michael S. Branicky, Jul 11 2022
CROSSREFS
Cf. A159236.
Sequence in context: A309488 A134809 A256186 * A329737 A166571 A201965
KEYWORD
nonn,base
AUTHOR
Roger L. Bagula, Jun 11 2006
EXTENSIONS
Name edited by Rémy Sigrist, Oct 08 2017
a(39)-a(41) from Michael S. Branicky, Jul 11 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 07:48 EST 2023. Contains 367531 sequences. (Running on oeis4.)