login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119627
Number of labeled graphs with no isolated nodes of size up to n+1 nodes, using 2*n+2 unique labels (no two nodes can have the same label).
0
6, 95, 3122, 202671, 25992373, 6561168159, 3271778102626, 3238332198581151, 6386927543425690577, 25167828012974622494207, 198457647877828107872246829, 3134149754118486012018252515615
OFFSET
1,1
COMMENTS
Replacing 2*n+2 in the formula with m gives the formula to calculate the number of labeled graphs with no isolated nodes of size up to n+1 nodes, using m unique labels (with m > n). An alternative (and much more complicated!) way to find the sequence is with the following recurrence (n>1, m>n): a(n,m)=a(n-1,m)+binomial(m,n)*(-a(n-1,n+1)+sum_{k=1..n*(n+1)/2}binomial(n*(n+1)/2,k)), a(2,m)=binomial(m,2)+binomial(m,3)+binomial(3,2)*binomial(m,3).
FORMULA
a(n)=sum_{k=1..n+1}binomial(2*n+2,k)*A006129(k)
EXAMPLE
a(1)=6 because with 1+1 nodes and 2*1+2 labels, you can construct the following graphs: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4. We have 6 different graphs.
MAPLE
A006125:=(n)->2^(n*(n-1)/2); A006129:=(n)->sum('binomial(n, i)*(-1)^i*A006125(n-i)', i=0..n); A:=(n)->sum('binomial(2*n+2, i)*A006129(i)', i=1..n+1);
CROSSREFS
Sequence in context: A338788 A326436 A243802 * A336825 A376155 A116158
KEYWORD
easy,nonn
AUTHOR
Delorme C. (delorme(AT)lri.fr), Lopez R. (lopez(AT)lri.fr), Soguet D. (soguet(AT)lri.fr) Jun 08 2006
STATUS
approved