login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2^n + 1 - 2*Fibonacci(n+1).
1

%I #10 Jan 01 2024 11:43:17

%S 0,1,1,3,7,17,39,87,189,403,847,1761,3631,7439,15165,30795,62343,

%T 125905,253783,510759,1026685,2061731,4136991,8295873,16627167,

%U 33311647,66716029,133582107,267406999,535206833,1071049287

%N 2^n + 1 - 2*Fibonacci(n+1).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,-1,2).

%F a(n) = 2^n + 1 - 2*Fibonacci(n+1) = 2^n + 1 + Fibonacci(n) - Fibonacci(n+3) = 2^n + 1 - Fibonacci(n) - Lucas(n). a(n) = 2(2^(n-1) - Fibonacci(n+1)) + 1, for n > 0. a(n) = A000051(n) - A006355(n+2) = A000051(n) - A000045(n) - A000032(n). a(n) = A101220(2,2,n-1) - A101220(1,1,n-3), for n > 2. a(n) = A008466(n) - A000071(n-1), for n > 0. a(n) = 2*A008466(n-1) + 1, for n > 0.

%F a(n) = 2*A101220(2,2,n-2) + 1, for n > 1. a(n) = Sum[2^(n-k)Fibonacci(k) - Fibonacci(k-2),{k,0,n}] = antidiagonal sums of A118654. a(n+1) - a(n) = 2(2^(n-1) - Fibonacci(n)), for n > 0. a(n+1) - a(n) = 2*A027934(n-2), for n > 1. a(n+1) - a(n) = 2*A101220(1,2,n-1), for n > 0. a(0) = 0; a(1) = 1; a(n) = a(n-1) + a(n-2) + 2^(n-2) - 1, for n > 1. a(0) = 0; a(1) = 1; a(2) = 1; a(3) = 3; a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4), for n > 3.

%F O.g.f. = x(1-3x+3x^2)/((1-x)(1-2x)(1-x-x^2)).

%t Table[2^n + 1 - 2 Fibonacci[n + 1], {n, 0, 30}]

%Y Cf. A000032, A000045, A000051, A000071, A006355, A008466, A027934, A101220, A118654.

%K nonn

%O 0,4

%A _Ross La Haye_, May 31 2006, Jun 27 2007