Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Jul 19 2016 11:07:16
%S 5,37,2,143,1,77,653,579,4787,37969,3581,3,271,25607,213,1887,186629,
%T 1641,16433,141,137,126709,1217,123709,114433,1,107767,934673,9183579,
%U 8947,86693,771,73,792159,739,7351,64338223,6197,66533,5843937
%N Smallest m such that m * prime(n) consists of decimal digits not greater than 1.
%C a(n) is the smallest number m such that the largest digit of m*prime(n) is 1. - _Farideh Firoozbakht_, Jun 03 2006
%e a(1)=37 because 3*37=111.
%t a[n_]:=(For[m=1, Max[IntegerDigits[m*Prime[n]]]!=1,m++ ];m); Do[Print[a[n]],{n,1,40}] - _Farideh Firoozbakht_, Jun 03 2006
%o (UBASIC)
%o 10 'inspired by Carlos Rivera's Puz361
%o 20 N=19:Y=Y+1:K=0
%o 30 Z=N*Y
%o 40 S=str(Z)
%o 50 A=alen(Z)
%o 60 for X=2 to A+1
%o 70 M=val(mid(S,X,1))
%o 80 if M>1 then K=K+1
%o 90 next X
%o 100 if K=0 then print Z,N,Y,K:stop
%o 110 Y=Y+1:K=0:goto 30
%o 120 'neils361, _Enoch Haga_, May 20 2006
%Y Cf. A119484, A007088.
%K nonn,base
%O 1,1
%A _Enoch Haga_, May 23 2006
%E Edited by _Charles R Greathouse IV_, Aug 05 2010