Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 01 2017 02:03:32
%S 1,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,3,1,2,2,1,2,2,3,3,3,2,2,1,2,1,2,2,
%T 3,3,5,3,4,3,3,1,2,2,1,2,2,3,3,5,5,5,5,5,4,5,3,2,2,1,2,1,2,2,3,3,5,5,
%U 7,6,7,6,8,6,7,5,5,3,3,1,2,2,1,2,2,3,3,5,5,7,8,8,8,10,9,10,10,10,8
%N Triangle read by rows: row n gives coefficients (lowest degree first) of P_n(x), where P_0(x) = P_1(x) = 1; P_n(x) = P_{n-1}(x) + x^(n-2)*P_{n-2}(x).
%C P_n(x) has degree A002620(n).
%H Seiichi Manyama, <a href="/A119469/b119469.txt">Table of n, a(n) for n = 0..9549 (rows n=0..49 of triangle, flattened).</a>
%e Triangle begins:
%e 1
%e 1
%e 2
%e 2,1
%e 2,1,2
%e 2,1,2,2,1
%e 2,1,2,2,3,1,2
%e 2,1,2,2,3,3,3,2,2,1
%e 2,1,2,2,3,3,5,3,4,3,3,1,2
%e 2,1,2,2,3,3,5,5,5,5,5,4,5,3,2,2,1
%p P[0]:=1; P[1]:=1; d:=[0,0]; M:=14; for n from 2 to M do P[n]:=expand(P[n-1]+q^(n-2)*P[n-2]);
%p lprint(seriestolist(series(P[n],q,M^2))); d:=[op(d),degree(P[n],q)]; od: d;
%Y A variant of A127836.
%Y Rows converge to A003113.
%K nonn,tabf
%O 0,3
%A _N. J. A. Sloane_, Apr 10 2007