%I #8 Jul 02 2020 08:02:49
%S 0,0,0,1,11,87,640,4855,39909,361995,3626938,39912947,478993719,
%T 6227004807,87178258916,1307674303055,20922789757641,355687427834707,
%U 6402373705204718,121645100407784603,2432902008174544219
%N a(n) = n!- A088921(n).
%H S. Billey, W. Jockusch and R. P. Stanley, <a href="http://dx.doi.org/10.1023/A:1022419800503">Some combinatorial properties of Schubert polynomials</a>, Journal of Algebraic Combinatorics 2(4) (1993) 345-374
%H S. Billey, W. Jockusch and R. P. Stanley. <a href="http://www.math.washington.edu/~billey/papers/bjs.pdf">Some combinatorial properties of Schubert polynomials</a>, Journal of Algebraic Combinatorics 2(4):345-374, 1993
%H K. Eriksson and S. Linusson, <a href="http://dx.doi.org/10.1215/S0012-7094-96-08502-6">Combinatorics of Fulton's essential set</a>, Duke Mathematical Journal 85(1) (1996) 61-76.
%H A. Vella, <a href="https://doi.org/10.37236/1690">Pattern avoidance in permutations: linear and cyclic orders</a>, Electron. J. Combin. 9 (2002/03), no. 2, #R18, 43 pp.
%t g[n_] = n! - (2^(n + 1) - Binomial[n + 1, 3] - 2*n - 1); Table[g[n], {n, 0, 30}]
%Y Cf. A088921.
%K nonn
%O 0,5
%A _Roger L. Bagula_, Jun 07 2007
%E Offset set to 0, definition shortened, References converted to URL's - The Assoc. Eds. of the OEIS, Oct 20 2010