Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 17 2021 08:02:33
%S 1,1,0,0,1,1,1,0,0,1,2,3,2,1,0,0,1,3,6,9,7,3,1,0,0,1,4,10,20,30,23,11,
%T 4,1,0,0,1,5,15,36,70,104,81,40,16,5,1,0,0,1,6,21,58,133,253,374,293,
%U 149,63,22,6,1,0,0,1,7,28,87,226,501,938,1380,1087,564,248,93,29,7,1,0,0
%N Pendular trinomial triangle, read by rows of 2n+1 terms (n>=0), defined by the recurrence: if 0 < k < n, T(n,k) = T(n-1,k) + T(n,2n-1-k); otherwise, if n-1 < k < 2n-1, T(n,k) = T(n-1,k) + T(n,2n-2-k); with T(n,0)=T(n+1,2n)=1 and T(n+1,2n+1)=T(n+1,2n+2)=0.
%C The diagonals may be generated by iterated convolutions of a base sequence B with the sequence C of central terms. The g.f. B(x) of the base sequence satisfies: B = 1 + x*B^2 + x^2*(B^2 - B); the g.f. C(x) of the central terms satisfies: C(x) = 1/(1+x - x*B(x)).
%H G. C. Greubel, <a href="/A119369/b119369.txt">Rows n = 0..50 of the triangle, flattened</a>
%F Sum_{k=0..2*n} T(n, k) = A119372(n). - _G. C. Greubel_, Mar 16 2021
%e To obtain row 4, pendular sums of row 3 are carried out as follows.
%e [1, 2, 3, 2, 1, 0, 0]: given row 3;
%e [1, _, _, _, _, _, _]: start with T(4,0) = T(3,0) = 1;
%e [1, _, _, _, _, _, 1]: T(4,6) = T(4,0) + T(3,6) = 1 + 0 = 1;
%e [1, 3, _, _, _, _, 1]: T(4,1) = T(4,6) + T(3,1) = 1 + 2 = 3;
%e [1, 3, _, _, _, 3, 1]: T(4,5) = T(4,1) + T(3,5) = 3 + 0 = 3;
%e [1, 3, 6, _, _, 3, 1]: T(4,2) = T(4,5) + T(3,2) = 3 + 3 = 6;
%e [1, 3, 6, _, 7, 3, 1]: T(4,4) = T(4,2) + T(3,4) = 6 + 1 = 7;
%e [1, 3, 6, 9, 7, 3, 1]: T(4,3) = T(4,4) + T(3,3) = 7 + 2 = 9;
%e [1, 3, 6, 9, 7, 3, 1, 0, 0]: complete row 4 by appending two zeros.
%e Triangle begins:
%e 1;
%e 1, 0, 0;
%e 1, 1, 1, 0, 0;
%e 1, 2, 3, 2, 1, 0, 0;
%e 1, 3, 6, 9, 7, 3, 1, 0, 0;
%e 1, 4, 10, 20, 30, 23, 11, 4, 1, 0, 0;
%e 1, 5, 15, 36, 70, 104, 81, 40, 16, 5, 1, 0, 0;
%e 1, 6, 21, 58, 133, 253, 374, 293, 149, 63, 22, 6, 1, 0, 0;
%e 1, 7, 28, 87, 226, 501, 938, 1380, 1087, 564, 248, 93, 29, 7, 1, 0, 0;
%e Central terms are:
%e C = A119371 = [1, 0, 1, 2, 7, 23, 81, 293, 1087, 4110, ...].
%e Lower diagonals start:
%e D1 = A119372 = [1, 1, 3, 9, 30, 104, 374, 1380, 5197, ...];
%e D2 = A119373 = [1, 2, 6, 20, 70, 253, 938, 3546, 13617, ...].
%e Diagonals above central terms (ignoring leading zeros) start:
%e U1 = A119375 = [1, 3, 11, 40, 149, 564, 2166, 8420, ...];
%e U2 = A119376 = [1, 4, 16, 63, 248, 980, 3894, 15563, ...].
%e There exists the base sequence:
%e B = A119370 = [1, 1, 2, 6, 19, 64, 225, 816, 3031, 11473, ...]
%e which generates all diagonals by convolutions with central terms:
%e D2 = B * D1 = B^2 * C
%e U2 = B * U1 = B^2 * C"
%e where C" = [1, 2, 7, 23, 81, 293, 1087, ...]
%e are central terms not including the initial [1,0].
%p T:= proc(n, k) option remember;
%p if k=0 and n=0 then 1
%p elif k<0 or k>2*(n-1) then 0
%p elif n=2 and k<3 then 1
%p else T(n-1, k) + `if`(k<n, T(n, 2*n-k-1), T(n, 2*n-k-2))
%p fi
%p end:
%p seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Mar 16 2021
%t T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k<0 || k>2*(n-1), 0, If[n==2 && k<3, 1, T[n-1, k] +If[k<n, T[n, 2*n-k-1], T[n, 2*n-k-2] ]]]];
%t Table[T[n,k], {n,0,10}, {k,0,2*n}]//Flatten (* _G. C. Greubel_, Mar 16 2021 *)
%o (PARI) T(n,k)= if(k==0 && n==0, 1, if(k>2*n-2 || k<0, 0, if(n==2 && k<=2, 1, T(n-1,k) + if(k<n, T(n,2*n-1-k), T(n,2*n-2-k) ))));
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (n==0 and k==0): return 1
%o elif (k<0 or k>2*(n-1)): return 0
%o elif (n==2 and k<3): return 1
%o else: return T(n-1, k) + ( T(n, 2*n-k-1) if k<n else T(n, 2*n-k-2) )
%o flatten([[T(n, k) for k in (0..2*n)] for n in (0..12)]) # _G. C. Greubel_, Mar 16 2021
%Y Cf. A119370, A119371, A119372, A119373, A119374, A119375, A119376.
%Y Variants: A118340, A118345, A118350.
%K nonn,tabf
%O 0,11
%A _Paul D. Hanna_, May 16 2006