Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 May 13 2017 09:49:15
%S 2,3,19,111,116,641,5411,170657
%N Integer lengths of Theodorus-primes: numbers n such that the concatenation of the first n decimal digits of the Theodorus's constant sqrt(3) is prime.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConstantPrimes.html">Constant Primes</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TheodorussConstantDigits.html">Theodorus's Constant Digits</a>
%e sqrt(3) = 1.732050807568877..., so
%e a(1) = 2 (17 with 2 decimal digits is the 1st prime in the decimal expansion),
%e a(2) = 3 (173 with 3 decimal digits is the 2nd prime in the decimal expansion).
%t nn = 1000; digs = RealDigits[Sqrt[3], 10, nn][[1]]; n = 0; t = {}; Do[n = 10*n + digs[[d]]; If[PrimeQ[n], AppendTo[t, d]], {d, nn}]; t (* _T. D. Noe_, Dec 05 2011 *)
%t Module[{nn=171000,c},c=RealDigits[Sqrt[3],10,nn][[1]];Select[Range[ nn], PrimeQ[ FromDigits[Take[c,#]]]&]] (* _Harvey P. Dale_, May 13 2017 *)
%Y Cf. A119343 (Theodorus-primes).
%Y Cf. A002194 (decimal expansion of sqrt(3)).
%K nonn,more,base,hard
%O 1,1
%A _Eric W. Weisstein_, May 15 2006
%E Edited by _Charles R Greathouse IV_, Apr 27 2010
%E a(8) = 170657 from _Eric W. Weisstein_, Aug 18 2013