Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 15 2021 07:28:05
%S 1,12,216,4320,90720,1959552,43110144,960740352,21616657920,
%T 489977579520,11171488813056,255928652808192,5886359014588416,
%U 135839054182809600,3143703825373593600,72933928748667371520
%N a(n) = binomial(2*n,n) * 6^n.
%C Number of lattice paths from (0,0) to (n,n) using three kinds of steps (1,0) and two kinds of steps (0,1). - _Joerg Arndt_, Jul 01 2011
%C Central terms of the triangles in A013620 and A038220.
%H Indranil Ghosh, <a href="/A119309/b119309.txt">Table of n, a(n) for n = 0..400</a>
%H Hacène Belbachir and Abdelghani Mehdaoui, <a href="https://doi.org/10.2989/16073606.2020.1729269">Recurrence relation associated with the sums of square binomial coefficients</a>, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
%F a(n) = 6^n * A000984(n).
%F G.f.: 1/sqrt(1-24*x). - _Zerinvary Lajos_, Dec 20 2008 [Corrected by _Joerg Arndt_, Jul 01 2011]
%F D-finite with recurrence: n*a(n) +12*(-2*n+1)*a(n-1)=0. - _R. J. Mathar_, Jan 20 2020
%F a(n) = 2^n*A098658(n) = 3^n*A059304(n). - _R. J. Mathar_, Jan 20 2020
%F From _Amiram Eldar_, Jul 21 2020: (Start)
%F Sum_{n>=0} 1/a(n) = 24/23 + 24*sqrt(23)*arcsin(1/sqrt(24))/529.
%F Sum_{n>=0} (-1)^n/a(n) = 24/25 - 24*arcsinh(1/sqrt(24))/125. (End)
%F E.g.f.: exp(12*x) * BesselI(0,12*x). - _Ilya Gutkovskiy_, Sep 14 2021
%e a(3) = binomial(2*3,3) * (6^3) = 20 * 216 = 4320. - _Indranil Ghosh_, Mar 03 2017
%t Table[Binomial[2n,n]*(6^n), {n, 0, 15}] (* _Indranil Ghosh_, Mar 03 2017 *)
%o (PARI) /* same as in A092566 but use */
%o steps=[[1,0], [1,0], [1,0], [0,1], [0,1]]; /* note repeated entries */
%o /* _Joerg Arndt_, Jun 30 2011 */
%o (PARI) a(n)=binomial(2*n,n)*6^n \\ _Charles R Greathouse IV_, Mar 03 2017
%o (Python)
%o import math
%o f=math.factorial
%o def C(n,r): return f(n)//f(r)//f(n-r)
%o def A119309(n): return C(2*n,n)*(6**n) # _Indranil Ghosh_, Mar 03 2017
%Y Cf. A000984, A013620, A038220, A059304, A098658.
%K nonn
%O 0,2
%A _Reinhard Zumkeller_, May 14 2006