login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Table by antidiagonals: number of m-dimensional partitions of n up to conjugacy, for n >= 1, m >= 0.
9

%I #8 Dec 05 2016 02:41:45

%S 1,1,1,1,1,1,1,2,1,1,1,3,2,1,1,1,4,4,2,1,1,1,6,6,4,2,1,1,1,8,11,7,4,2,

%T 1,1,1,12,19,13,7,4,2,1,1,1,16,33,25,14,7,4,2,1,1,1,22,55,49,27,14,7,

%U 4,2,1,1,1,29,95,93,55,28,14,7,4,2,1,1,1,40,158,181,111,57,28,14,7,4,2,1,1

%N Table by antidiagonals: number of m-dimensional partitions of n up to conjugacy, for n >= 1, m >= 0.

%C Partitions are considered as generalized Ferrers diagrams; any permutation of the axes produces a conjugate.

%C Transposed table is A119338. - _Max Alekseyev_, May 14 2006

%F a(n,m) = a(n,n-2) for m >= n-1.

%e Table starts:

%e 1, 1, 1, 1, 1

%e 1, 1, 1, 1, 1

%e 1, 2, 2, 2, 2

%e 1, 3, 4, 4, 4

%e 1, 4, 6, 7, 7

%e 1, 6, 11, 13, 14

%Y Columns A005987, A000786, A119266, A119267; diagonal A119268. Cf. A096751, A119270.

%Y Cf. A119339, A119340, A119341, A119342.

%K nonn,tabl

%O 1,8

%A _Franklin T. Adams-Watters_, May 11 2006

%E More terms from _Max Alekseyev_, May 14 2006