Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 03 2017 10:37:16
%S 1,945,1018976683725,1853070540093840001956842537745897243375
%N Least odd number k such that sigma(k)/k >= n.
%C These numbers are a subset of the oddly superabundant numbers, A119239. Laatsch mentions a(3). Pettigrew computes a(4) and a(5), the latter being a 123-digit number.
%C Pettigrew (link, Tableau 5, p. 21) gives a(5) as 3^6*5^4*7^3*11^2*13^2*17^2*19*...*277. - _Jeppe Stig Nielsen_, Jul 03 2017
%H Jeppe Stig Nielsen, <a href="/A119240/b119240.txt">Table of n, a(n) for n = 1..5</a>
%H Richard Laatsch, <a href="http://www.jstor.org/stable/2690424">Measuring the abundancy of integers</a>, Mathematics Magazine 59 (2) (1986) 84-92.
%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy : Some Resources </a>
%H Steve Pettigrew, <a href="http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ55787.pdf">Sur la distribution de nombres spéciaux consécutifs</a>, M.Sc. Thesis, Univ. Laval, 2000.
%Y Cf. A023199 (least number k such that sigma(k)/k >= n).
%K nonn
%O 1,2
%A _T. D. Noe_, May 09 2006