%I #14 Jan 25 2021 20:36:51
%S 24,12,0,15,30,18,-4,-4,34,-4,-4,22,8,8,0,-8,-8,38,4,4,26,4,4,42,-4,
%T -4,58,-4,-4,50,4,7,-7,-4,52,8,8,0,-8,-8,68,4,4,56,4,4,80,-8,-8,80,4,
%U 4,-4,0,4,-4,-4,86,4,7
%N Determinant of 3 X 3 matrices of n-th continuous block of 9 consecutive composites.
%C Analog of A117330 with composites instead of primes.
%F a(n) = c(n)*c(n+4)*c(n+8) - c(n)*c(n+5)*c(n+7) - c(n+1)*c(n+3)*c(n+8) + c(n+1)*c(n+5)*c(n+6) + c(n+2)*c(n+3)*c(n+7) - c(n+2)*c(n+4)*c(n+6) where c(n) = A002808(n) is the n-th composite.
%e a(1) = 24 =
%e | 4 6 8|
%e | 9 10 12|
%e |14 15 16|.
%e a(3) = 0 because of the first of an infinite number of singular matrices:
%e | 8 9 10|
%e |12 14 15|
%e |16 18 20|.
%e a(15) = 0 because of the singular matrix:
%e |25 26 27|
%e |28 30 32|
%e |33 34 35|.
%e a(38) = 0 because of the singular matrix:
%e |55 56 57|
%e |58 60 62|
%e |63 64 65|.
%e a(54) = 0 because of the singular matrix:
%e |76 77 78|
%e |80 81 82|
%e |84 85 86|.
%p A118983 := proc(n) A002808(n)*A002808(n+4)*A002808(n+8) -A002808(n)*A002808(n+5) *A002808(n+7) -A002808(n+1)*A002808(n+3) *A002808(n+8) +A002808(n+1)*A002808(n+5) *A002808(n+6) +A002808(n+2)*A002808(n+3) *A002808(n+7) -A002808(n+2)*A002808(n+4) *A002808(n+6) ; end proc:
%p seq(A118983(n),n=1..60) ; # _R. J. Mathar_, Dec 22 2010
%t Det[#]&/@(Partition[#,3]&/@Partition[Select[Range[100],CompositeQ],9,1]) (* _Harvey P. Dale_, May 16 2019 *)
%o (PARI) c(n) = for(k=0, primepi(n), isprime(n++)&&k--); n; \\ A002808
%o a(n) = matdet(matrix(3,3,i,j,c((n+j-1)+3*(i-1)))); \\ _Michel Marcus_, Jan 25 2021
%Y Cf. A002808, A117301, A117330, A118780, A118781.
%K easy,sign,less
%O 1,1
%A _Jonathan Vos Post_, May 25 2006