login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that cross the x-axis k times (n>=1, k>=0).
2

%I #25 Oct 27 2021 11:26:42

%S 2,4,2,10,8,2,28,28,12,2,84,96,54,16,2,264,330,220,88,20,2,858,1144,

%T 858,416,130,24,2,2860,4004,3276,1820,700,180,28,2,9724,14144,12376,

%U 7616,3400,1088,238,32,2,33592,50388,46512,31008,15504,5814,1596,304,36,2

%N Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that cross the x-axis k times (n>=1, k>=0).

%C A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1).

%C Row sums are the central binomial coefficients (A000984). T(n,0)=2*A000108(n) (the Catalan numbers doubled). T(n,1)=2*A002057(n-2). Sum(k*T(n,k),k>=0)=2*A008549(n-1). For crossings of the x-axis in one direction, see A118919.

%C This triangle is related to paired pattern P_3 and P_4 defined in the Pan & Remmel link. - _Ran Pan_, Feb 01 2016

%H Ran Pan and Jeffrey B. Remmel, <a href="http://arxiv.org/abs/1601.07988">Paired patterns in lattice paths</a>, arXiv:1601.07988 [math.CO], 2016.

%F T(n,k) = 2*(k+1)*binomial(2*n,n-k-1)/n.

%F G.f.: G(t,z)=2*z*C^2/(1-t*z*C^2), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.

%F More generally, the trivariate g.f. G=G(x,y,z), where x (y) marks number of downward (upward) crossings of the x-axis, is given by G = z*C^2*(2+(x+y)*z*C^2)/(1-x*y*z^2*C^4).

%F a(n) = 2 * A039598(n-1). - _Georg Fischer_, Oct 27 2021

%e T(3,1)=8 because we have ud|dudu,ud|dduu,udud|du,uudd|du,du|udud,du|uudd, dudu|ud and dduu|ud (the crossings of the x-axis are shown by |).

%e Triangle starts:

%e 2;

%e 4, 2;

%e 10, 8, 2;

%e 28,28,12, 2;

%e 84,96,54,16,2;

%p T:=(n,k)->2*(k+1)*binomial(2*n,n-k-1)/n: for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form

%t Table[2 (k + 1) Binomial[2 n, n - k - 1]/n, {n, 10}, {k, 0, n - 1}] // Flatten (* _Michael De Vlieger_, Feb 01 2016 *)

%o (Sage) # Algorithm of L. Seidel (1877)

%o # Prints the first n rows of the triangle.

%o def A118920_triangle(n) :

%o D = [0]*(n+2); D[1] = 2

%o b = True; h = 1

%o for i in range(2*n) :

%o if b :

%o for k in range(h, 0, -1) : D[k] += D[k-1]

%o h += 1

%o else :

%o for k in range(1, h, 1) : D[k] += D[k+1]

%o b = not b

%o if b : print([D[z] for z in (1..h-1)])

%o A118920_triangle(10) # _Peter Luschny_, Oct 19 2012

%o (PARI) T(n,k) = 2*(k+1)*binomial(2*n,n-k-1)/n \\ _Charles R Greathouse IV_, Feb 01 2016

%Y Cf. A000984, A000108, A002057, A008549, A039598, A118919.

%K nonn,tabl

%O 1,1

%A _Emeric Deutsch_, May 06 2006