login
Ratio of Dimensions of the traditional Cartan exceptional group sequence A1,G2,F4,E6,E7,E8 to the Cartan matrix Dimension: Dimc={1, 2, 4, 6, 7, 8} DimG={3, 14, 52, 78, 133, 248} DimG/DimC={3, 7, 13, 13, 19, 31}.
2

%I #10 Jul 19 2015 10:01:07

%S 3,7,13,13,19,31

%N Ratio of Dimensions of the traditional Cartan exceptional group sequence A1,G2,F4,E6,E7,E8 to the Cartan matrix Dimension: Dimc={1, 2, 4, 6, 7, 8} DimG={3, 14, 52, 78, 133, 248} DimG/DimC={3, 7, 13, 13, 19, 31}.

%C The sequence is inherently unordered, because there is no standard ordering of these groups. - _R. J. Mathar_, Dec 04 2011

%F P[n]=Poincare-Polynomial[n]=Product[1+t^A129766[m],{m,1,n}]

%F DimG[n]=Length[CoefficientList[P[n],t]]-1

%F Pc[n]=CharacteristicPolynomial[M[n],x]

%F DimC[n]=Length[CoefficientList[Pc[n],x]]-1

%F a[n]=DimG[n]/DimC[n]

%t (* Cartan Matrices: *)

%t e[3] = {{2}};

%t e[4] = {{2, -3}, {-1, 2}};

%t e[5] = {{2, -1, 0, 0}, {-1, 2, -2, 0}, {0, -1, 2, -1}, {0, 0, -1, 2}};

%t e[6] = {{2, 0, -1, 0, 0, 0}, {0, 2, 0, -1, 0, 0}, {-1, 0, 2, -1, 0, 0}, { 0, -1, -1, 2, -1, 0}, { 0, 0, 0, -1, 2, -1}, { 0, 0, 0, 0, -1, 2}};

%t e[7] = {{2, 0, -1, 0, 0, 0, 0}, {0, 2, 0, -1, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0}, {0, -1, -1, 2, -1, 0, 0}, {0, 0, 0, -1, 2, -1, 0}, { 0, 0, 0, 0, -1, 2, -1 }, { 0, 0, 0, 0, 0, -1, 2 }};

%t e[8] = { {2, 0, -1, 0, 0, 0, 0, 0}, { 0, 2, 0, -1, 0, 0, 0, 0}, {-1, 0, 2, -1, 0, 0, 0, 0}, {0, -1, -1, 2, -1, 0, 0, 0}, {0, 0, 0, -1, 2, -1, 0, 0}, { 0, 0, 0, 0, -1, 2, -1, 0}, { 0, 0, 0, 0, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, -1, 2}} ;

%t a0 = Table[Length[CoefficientList[CharacteristicPolynomial[e[n], x], x]] - 1, {n, 3, 8}]; (* Poincaré Polynomials*)

%t (*Poincaré polynomial exponents for G2, E6, E7, E8 from A005556, A005763, A005776 and Armand Borel's Essays in History of Lie Groups and Algebraic Groups*) (* b[n] = a[n] + 1 : DimGroup = Apply[Plus, b[n]]*)

%t a[0] = {1};

%t a[1] = {1, 5};

%t a[2] = {1, 5, 7, 11};

%t a[3] = {1, 4, 5, 7, 8, 11};

%t a[4] = {1, 5, 7, 9, 11, 13, 17};

%t a[5] = {1, 7, 11, 13, 17, 19, 23, 29};

%t b0 = Table[Length[CoefficientList[Expand[Product[(1 + t^(2*a[i][[n]] + 1)), {n, 1, Length[a[i]]}]], t]] - 1, {i, 0, 5}];

%t Table[b0[[n]]/a0[[n]], {n, 1, Length[a0]}

%Y Cf. A117133, A129766, A005556, A005763, A005776.

%K nonn,fini,full,less,uned

%O 1,1

%A _Roger L. Bagula_, May 17 2007