OFFSET
0,2
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..300, flattened
FORMULA
G.f.: G(t,z) = 1/[1-2z+(1-t)z^4]. T(n,k) = 2T(n-1,k)-T(n-4,k)+T(n-4,k-1) (n>=4,k>=1).
EXAMPLE
T(9,2) = 6 because we have aa0, aa1, a0a, a1a, 0aa and 1aa, where a=0011.
Triangle starts:
1;
2;
4;
8;
15, 1;
28, 4;
52, 12;
96, 32;
MAPLE
G:=1/(1-2*z+(1-t)*z^4): Gser:=simplify(series(G, z=0, 23)): P[0]:=1: for n from 1 to 19 do P[n]:=sort(coeff(Gser, z^n)) od: for n from 0 to 19 do seq(coeff(P[n], t, j), j=0..floor(n/4)) od; # yields sequence in triangular form
MATHEMATICA
nn=12; c=0; Map[Select[#, #>0&]&, CoefficientList[Series[1/(1-2x - (y-1)x^4/ (1-(y-1)c)), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Dec 25 2013 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 03 2006
STATUS
approved