login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118884
Triangle read by rows: T(n,k) is the number of binary sequences of length n containing k subsequences 0011 (n,k>=0).
3
1, 2, 4, 8, 15, 1, 28, 4, 52, 12, 96, 32, 177, 78, 1, 326, 180, 6, 600, 400, 24, 1104, 864, 80, 2031, 1827, 237, 1, 3736, 3800, 648, 8, 6872, 7800, 1672, 40, 12640, 15840, 4128, 160, 23249, 31884, 9846, 556, 1, 42762, 63704, 22844, 1752, 10, 78652, 126480
OFFSET
0,2
COMMENTS
Row n has 1+floor(n/4) terms. Sum of entries in row n is 2^n (A000079). T(n,0) = A008937(n+1). T(n,1) = A118885(n). Sum(k*T(n,k), k=0..n-1) = (n-3)*2^(n-4) (A001787).
LINKS
FORMULA
G.f.: G(t,z) = 1/[1-2z+(1-t)z^4]. T(n,k) = 2T(n-1,k)-T(n-4,k)+T(n-4,k-1) (n>=4,k>=1).
EXAMPLE
T(9,2) = 6 because we have aa0, aa1, a0a, a1a, 0aa and 1aa, where a=0011.
Triangle starts:
1;
2;
4;
8;
15, 1;
28, 4;
52, 12;
96, 32;
MAPLE
G:=1/(1-2*z+(1-t)*z^4): Gser:=simplify(series(G, z=0, 23)): P[0]:=1: for n from 1 to 19 do P[n]:=sort(coeff(Gser, z^n)) od: for n from 0 to 19 do seq(coeff(P[n], t, j), j=0..floor(n/4)) od; # yields sequence in triangular form
MATHEMATICA
nn=12; c=0; Map[Select[#, #>0&]&, CoefficientList[Series[1/(1-2x - (y-1)x^4/ (1-(y-1)c)), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Dec 25 2013 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 03 2006
STATUS
approved