login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A118872
Numbers k such that digit sum of 3^k is a power of 3.
4
0, 1, 2, 3, 4, 5, 9, 10, 11, 13, 16, 17, 21, 27, 31, 35, 36, 39, 114, 119, 973, 1005, 1010, 1025, 3006, 3029, 3040, 9128, 9215, 9227, 9316, 27431, 27442, 27515, 27519, 27554, 82632, 82746, 82763, 82784, 83111, 246838, 247206, 247388, 247406, 247447, 741310, 742154
OFFSET
1,3
COMMENTS
a(47) > 677750. - Ray Chandler, Jun 16 2006
a(47) <= 741310. If a(47) < 741310 then a(47) < 720000. a(48) <= 742154. If a(48) < 741310 then a(48) < 720000. - David A. Corneth, Nov 23 2022
FORMULA
A067500(n) = 3^a(n).
EXAMPLE
3^39 = 4052555153018976267 with digit sum 81 = 3^4, so 39 is a term.
MATHEMATICA
Do[If[IntegerQ[Log[3, Plus @@ IntegerDigits[3^n]]], Print[n]], {n, 0, 677750}];
PROG
(PARI) is(n) = my(s = sumdigits(3^n)); s == 3^logint(s, 3) \\ David A. Corneth, Nov 23 2022
CROSSREFS
Cf. A004166 (sum of digits of 3^n).
Sequence in context: A333050 A328119 A118732 * A046029 A303600 A194410
KEYWORD
base,nonn
AUTHOR
Zak Seidov, May 24 2006
EXTENSIONS
Extended by Ray Chandler, Jun 16 2006
a(47) and a(48) from Jon E. Schoenfield, Nov 25 2022
STATUS
approved