login
Numbers n such that 2^n, 3^n and 5^n have even digit sum.
5

%I #8 Mar 23 2023 10:58:31

%S 15,37,46,47,64,71,83,84,90,102,106,107,116,120,122,135,149,154,168,

%T 173,179,180,181,185,193,195,198,200,210,222,224,229,232,239,242,248,

%U 265,289,299,304,310,327,330,332,333,347,356,364,367,369,375,383,402,407

%N Numbers n such that 2^n, 3^n and 5^n have even digit sum.

%e {2^15,3^15,5^15}={32768,14348907,30517578125} with even digit sum {26,36,44}.

%t Select[Range[500],AllTrue[Total/@(IntegerDigits/@{2^#,3^#,5^#}),EvenQ]&] (* _Harvey P. Dale_, Mar 23 2023 *)

%o (PARI) isok(n) = !(sumdigits(2^n) % 2) && !(sumdigits(3^n) % 2) && !(sumdigits(5^n) % 2); \\ _Michel Marcus_, Oct 10 2013

%Y Subsequence of A118734.

%K base,nonn

%O 1,1

%A _Zak Seidov_, May 24 2006