login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of parts in n-th partition in Abramowitz and Stegun order.
7

%I #49 Aug 02 2023 07:09:38

%S 1,1,2,1,3,2,1,4,3,4,2,1,5,4,6,3,4,2,1,6,5,8,9,4,6,8,3,4,2,1,7,6,10,

%T 12,5,8,9,12,4,6,8,3,4,2,1,8,7,12,15,16,6,10,12,16,18,5,8,9,12,16,4,6,

%U 8,3,4,2,1,9,8,14,18,20,7,12,15,16,20,24,27,6,10,12,16,18,24,5,8,9,12,16,4

%N Product of parts in n-th partition in Abramowitz and Stegun order.

%C Let Theta(n) denote the set of norm values corresponding to all the partitions of n. The following results hold regarding this set: (i) Theta(n) is a subset of Theta(n+1); (ii) A prime p will appear as a norm only for partitions of n>=p; (iii) There exists a prime p not in Theta(n) for all n>=6; (iv) Let h(k) be the prime floor function which gives the greatest prime less than or equal to the k, then the prime p=h(n+1) does not belong to Theta(n); and (v) The primes not in the set Theta(n) are A000720(A000792(n)) - A000720(n). - _Abhimanyu Kumar_, Nov 25 2020

%D Abramowitz and Stegun, Handbook (1964) page 831.

%H Andrew Howroyd, <a href="/A118851/b118851.txt">Table of n, a(n) for n = 0..2713</a> (rows 0..20)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Walter Bridges and William Craig, <a href="https://arxiv.org/abs/2308.00123">On the distribution of the norm of partitions</a>, arXiv:2308.00123 [math.CO], 2023.

%H Abhimanyu Kumar and Meenakshi Rana, <a href="http://www.mathjournals.org/jrms/2020-035-003/2020-035-003-005.html">On the treatment of partitions as factorization and further analysis</a>, Journal of the Ramanujan Mathematical Society 35(3), 263-276 (2020).

%H Wolfdieter Lang, <a href="/A118851/a118851_1.pdf">Rows n=1..10.</a>

%H Robert Schneider and Andrew V. Sills, <a href="http://math.colgate.edu/~integers/uproc13/uproc13.pdf">The Product of Parts or "Norm" of a Partition</a>, INTEGERS, Volume 20A (2020) Paper #A13, 16 pp.

%H Andrew V. Sills and Robert Schneider, <a href="https://arxiv.org/abs/1904.08004">The product of parts or "norm" of a partition</a>, arXiv:1904.08004 [math.NT], 2019-2021.

%F a(n) = A085643(n)/A048996(n).

%F T(n,k) = A005361(A036035(n,k)). - _Andrew Howroyd_, Oct 19 2020

%e a(9) = 4 because the 9th partition is [2,2] and 2*2 = 4.

%e Table T(n,k) starts:

%e 1;

%e 1;

%e 2, 1;

%e 3, 2, 1;

%e 4, 3, 4, 2, 1;

%e 5, 4, 6, 3, 4, 2, 1;

%e 6, 5, 8, 9, 4, 6, 8, 3, 4, 2, 1;

%e 7, 6, 10, 12, 5, 8, 9, 12, 4, 6, 8, 3, 4, 2, 1;

%e 8, 7, 12, 15, 16, 6, 10, 12, 16, 18, 5, 8, 9, 12, 16, 4, 6, 8, 3, 4, 2, 1;

%o (PARI)

%o C(sig)={vecprod(sig)}

%o Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}

%o { for(n=0, 7, print(Row(n))) } \\ _Andrew Howroyd_, Oct 19 2020

%Y Cf. A000041 (row lengths), A006906 (row sums).

%Y Cf. A005361, A036035, A036036, A048996, A078812, A085643, A103921, A111786.

%K nonn,tabf

%O 0,3

%A _Alford Arnold_, May 01 2006

%E Corrected and extended by _Franklin T. Adams-Watters_, May 26 2006