%I #21 Jan 25 2021 04:26:27
%S 880,-448,-1472,-240,2480,-1352,-4128,-96,2736,-2520,120,1080,4288,
%T 4880,4600,13368,7056,14560,2960,13320,0,24864,-11096,-24264,0,-9168,
%U -2128,-15792,0,18120,-5248,6384,-21840,-38776,-20480,20176,-72896,-69200,40080,-37632
%N Determinants of 4 X 4 matrices of 16 consecutive primes.
%C 4 X 4 analog of A117330.
%C All terms are even. - _Harvey P. Dale_, May 05 2016
%H Harvey P. Dale, <a href="/A118799/b118799.txt">Table of n, a(n) for n = 1..1000</a>
%e a(1) = 880 =
%e | 2 3 5 7|
%e |11 13 17 19|
%e |23 29 31 37|
%e |41 43 47 53|.
%e a(10) = -2520 =
%e |29 31 37 41|
%e |43 47 53 59|
%e |61 67 71 73|
%e |79 83 89 97|.
%e a(21) = 0 =
%e | 73 79 83 89|
%e | 97 101 103 107|
%e |109 113 127 131|
%e |137 139 149 151|.
%p A118799 := proc(n)
%p local A,i,r,c ;
%p A := Matrix(4,4) ;
%p i := n ;
%p for r from 1 to 4 do
%p for c from 1 to 4 do
%p A[r,c] := ithprime(i) ;
%p i := i+1 ;
%p end do:
%p end do:
%p LinearAlgebra[Determinant](A) ;
%p end proc: # _R. J. Mathar_, May 05 2013
%t Module[{nn=60,prs},prs=Prime[Range[nn]];Table[Det[Partition[ Take[ prs, {n,n+15}],4]],{n,nn-15}]] (* _Harvey P. Dale_, Apr 29 2016 *)
%o (PARI) a(n) = matdet(matrix(4,4,i,j,prime((n+j-1)+4*(i-1)))); \\ _Michel Marcus_, Jan 25 2021
%Y Cf. A000040, A067276, A117301, A117330 , A118713.
%K easy,sign
%O 1,1
%A _Jonathan Vos Post_, May 23 2006