login
Determinants of 4 X 4 matrices of 16 consecutive primes.
5

%I #21 Jan 25 2021 04:26:27

%S 880,-448,-1472,-240,2480,-1352,-4128,-96,2736,-2520,120,1080,4288,

%T 4880,4600,13368,7056,14560,2960,13320,0,24864,-11096,-24264,0,-9168,

%U -2128,-15792,0,18120,-5248,6384,-21840,-38776,-20480,20176,-72896,-69200,40080,-37632

%N Determinants of 4 X 4 matrices of 16 consecutive primes.

%C 4 X 4 analog of A117330.

%C All terms are even. - _Harvey P. Dale_, May 05 2016

%H Harvey P. Dale, <a href="/A118799/b118799.txt">Table of n, a(n) for n = 1..1000</a>

%e a(1) = 880 =

%e | 2 3 5 7|

%e |11 13 17 19|

%e |23 29 31 37|

%e |41 43 47 53|.

%e a(10) = -2520 =

%e |29 31 37 41|

%e |43 47 53 59|

%e |61 67 71 73|

%e |79 83 89 97|.

%e a(21) = 0 =

%e | 73 79 83 89|

%e | 97 101 103 107|

%e |109 113 127 131|

%e |137 139 149 151|.

%p A118799 := proc(n)

%p local A,i,r,c ;

%p A := Matrix(4,4) ;

%p i := n ;

%p for r from 1 to 4 do

%p for c from 1 to 4 do

%p A[r,c] := ithprime(i) ;

%p i := i+1 ;

%p end do:

%p end do:

%p LinearAlgebra[Determinant](A) ;

%p end proc: # _R. J. Mathar_, May 05 2013

%t Module[{nn=60,prs},prs=Prime[Range[nn]];Table[Det[Partition[ Take[ prs, {n,n+15}],4]],{n,nn-15}]] (* _Harvey P. Dale_, Apr 29 2016 *)

%o (PARI) a(n) = matdet(matrix(4,4,i,j,prime((n+j-1)+4*(i-1)))); \\ _Michel Marcus_, Jan 25 2021

%Y Cf. A000040, A067276, A117301, A117330 , A118713.

%K easy,sign

%O 1,1

%A _Jonathan Vos Post_, May 23 2006