OFFSET
0,3
COMMENTS
Also equals the unsigned row sums of triangle A118793 (offset without leading zero).
FORMULA
a(n) = (n-1)!*Sum_{k=0..n-1} abs( [x^k] (x/log(1-x-x^2))^n/(n-1-k)! ) for n>0.
a(n) = sum(k=1..n, (sum(i=0..n-k, ((i+k-1)!*C(k+2*i-1,i+k-1) *stirling2(n, i+k))))/(k-1)!). - Vladimir Kruchinin, Nov 22 2011
a(n) ~ sqrt(5) * n^(n-1) / (2^(3/2) * exp(n-1/2) * (log(5/4))^(n-1/2)). - Vaclav Kotesovec, Jul 14 2014
EXAMPLE
E.g.f.: A(x) = x + (4/2)*x^2 + (29/6)*x^3 + (329/24)*x^4 + (5172/120)*x^5 + ...
MATHEMATICA
CoefficientList[Series[-1 + E^((1-Sqrt[5-4*E^x])/2), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 14 2014 *)
PROG
(PARI) a(n)=local(x=X+X^2*O(X^n)); n!*polcoeff(-1+exp((1-sqrt(5-4*exp(x)))/2), n, X)
(PARI) /* As the unsigned row sums of A118793: */ a(n)=local(x=X+X^2*O(X^n)); if(n<1, 0, (n-1)!*sum(k=0, n-1, abs(polcoeff(((x/log(1-x-x^2)))^n/(n-1-k)!, k, X))))
(Maxima) a(n):=sum((sum(((i+k-1)!*binomial(k+2*i-1, i+k-1)*stirling2(n, i+k)), i, 0, n-k))/(k-1)!, k, 1, n); /* Vladimir Kruchinin, Nov 22 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 30 2006
STATUS
approved